- ベストアンサー
- すぐに回答を!
数I・三角比の質問です。急ぎです。
数I・三角比の質問なのですが、明日までの宿題なので教えてください。 ΔABCにおいて、AB=6、AC=6√3、cosA=-(√3/3)とする。 このときBC=ア√イ、sinB=(√ウ/エ)である。 さらに、点Dは辺BC上にあり、cos∠BAD=(2√2/3)であるとする。 このとき、AB=(2√2/3)AD+(√オ/カ)BDであり、また、正弦定理によりAD=(√キ)BDとなる。 したがって、BD=√クであり、ΔABDの外接円の半径は(ケ√コ/サ)となる。 また、ΔACDの面積はシス√セである。 BC=6√6、sinB=(√3/3)、AB=(2√2/3)AD+(√6/3)BD、AD=√3BDというところまではわかっていますので、クからの解き方を教えていただきたいと思っています。 お手数ですがよろしくお願いいたします。
- amkxq
- お礼率30% (3/10)
- 数学・算数
- 回答数1
- ありがとう数1
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- owata-www
- ベストアンサー率33% (645/1954)
√ク AD=√3BDをAB=(2√2/3)AD+(√6/3)BDに代入して AB=(2√2/3)*√3BD+(√6/3)BD=6 を解いて ク=6 ケ√コ/サ sinB=(√3/3)より √6/(√3/3)*2 =3√2/2 ケ=3、コ=2、サ=2 シス√セ △ABC=1/2*AB*AC*sinA=1/2*6*6√3*√6/3=18√2 △ABD=1/2*AB*BD*sinB=1/2*6*√6*√3/3=3√2 よって、△ACD=15√2 シス=15、セ=2 計算は確かめといてください
関連するQ&A
- 数I・三角比の質問です。急いでいます。
数I・三角比の問題。明日までの宿題なので教えてください。 ΔABCにおいて、AB=7、BC=4√2、∠ABC=45°とする。また、ΔABCの外接円の中心をOとする。 このとき、CA=アであり、外接円Oの半径は、(イ/ウ)√エである。 下のオには、次の(0)~(3)のうちからあてはまるものをひとつ選べ。 (0)AC (1)AD (2)BC (3)BD 外接円Oの点Aを含まない弧BC上に点DをΔABDとΔCBDの面積比が7:2であるようにとる。このとき、∠BAD=∠BCDであるから、ΔABDとΔCBDの面積比はAB・ADとオ・CDの比に等しい。 このことにより、AD=(カ√キ)CDである。 また、ΔADCにおいて、∠ADC=クケ°であるから、CD=√コ、AD=(サ√シス)である。 点Cから辺ADに下ろした垂線をCHとすると、CH={(√セソ)/タ}であり、 ΔADCを直線ADを軸として1回転してできる立体の体積は(チ/ツ)(√テト)πである。 問題は以上です。 自分がやったのが正しければ、CA=5、外接円Oの半径=(5/2)√2、オは2、なのですが…カの部分からわからないので、どうか教えてください。よろしくお願いいたします。
- ベストアンサー
- 数学・算数
- 内角の二等分線の定理(?)の証明を中学生レベルで
今、高校で正弦定理を終え、その問題で内角の二等分線の定理の証明がありました。 正弦定理を使えば簡単に証明できたのですが、 先生の話によると中学生の知識で証明できるそうです。 平行四辺形をつくる…と言っていたのですが、 なかなか導けません。 証明の方法を教えてください。 お願いします。 参考に正弦定理をつかった証明を覚えている範囲で… ΔABCで∠Aの二等分線とBCとの交点をDとする。 ΔABDでBD/sinA/2=AD/sinB ΔACDでCD/sinA/2=AD/sinC 上の二式よりBD・sinB=CD・sinC ⇔CD/BD=sinB/sinC…(1) ΔABCでAC/sinB=AB/sinC ⇔AC/AB=sinB/sinC…(2) (1)(2)よりCD/BD=AC/AB ∴AB:AC=BD:CD
- 締切済み
- 数学・算数
- 三角比の問題です
数学IAの問題です 最初の問題を余弦定理を使い解こうとしたのですが、答えがcosC=1になってそこからがわからなくなりました 解き方や途中式を教えていただきたいです 面倒かと思いますが、できる方協力してくださるととてもありがたいです よろしくおねがいします △ABCでAB=√7、BC=3、CA=2とします (1)cosCはなにか ∠Cはなにか (2)△ABCの面積はなにか (3)cosA、sinBはなにか (4)△ABCの外接円の半径はなにか (5)∠Cの二等分線と辺ABの交点をDとすると AD、DCはなにか 多くてすみません 全部じゃなくてわかるところまででもいいのでお願いします
- 締切済み
- 数学・算数
- 数学の三角比の問題です。
AB=3、∠A=60°の△ABCがあり、△ABCの外接円の半径は√39/3である。 (1)辺BCの長さを求めよ。 (2)辺ACの長さを求めよ。また、tanBの値を求めよ。 (3)直線BC上に∠BAD=90°になるように点Dをとる。線分ADの長さを求めよ。 また、線分ACを折り目として、△ACDを折り曲げ、平面ABCと平面ACDが垂直になるようにする。 折り曲げた後の点Dに対して、線分BDの長さを求めよ。 宜しくお願いします。
- 締切済み
- 数学・算数
- 大至急 三角比・三角関数の問題
大至急 三角比・三角関数の問題 学校のテキストで分からない問題があります もしよければ途中式を教えてください 1△ABCにおいて、AB=6 BC=7 CA=8とし、∠BACの2等分線が辺BCと交わる点をDとする。 (1)cos∠ABCの値を求めよ (2)△ABCの外接円の半径および△ABCの面積を求めよ (3)線分BD、CD、ADの長さを求めよ (4)△ABD,△ACDの内接円の半径をそれぞれr1、r2とするとき、その比を求めよ 2半径1の円に内接し、∠A=60°である△ABCについて (1)BCの長さを求めよ (2)3辺の長さの和AB+BC+CAの最大値を求めよ 3鋭角三角形ABCにおいて、AB=5、AC=4で、△ABCの面積が8である (1)sinA,cosAの値を求めよ (2)△ABCの外接円の半径を求めよ (3)△ABCの内接円の半径を求めよ 4AB=1、AC=√3、∠A=90°の直角三角形ABCがある。頂点A以外と共有点をもたない直線をlとし、2点BCから直線 lにおろした垂線の足をD、Eとする。 直線lをいろいろとるとき、4角形BCEDの周の長さLの最大値を求めよ よろしくお願いしますm(_ _)m
- 締切済み
- 数学・算数
- 数学I 三角比の図形(正弦・余弦定理)の問題
基本的な問題ばかりですが解いてみたものの回答が手元になくて困っています。多いですがよろしくお願い致します。 1.△ABCでAB=4 , AC=5 , BC=2とする。 (1)cosAを求めよ。 (2)△ABCの面積を求めよ。 (3)外接円の半径を求めよ。 2.△ABCで∠A=60°, AB=3 , AC=4とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 3.△ABCでAB=5 , AC=6 , BC=√91とする。 (1)∠Aを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 4.△ABCでAB=7 , AC=5 , ∠A=60°とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 5.△ABCでAB=2 , AC=4 , BC=3とする。また∠Aの二等分線とBCの交点をDとする。 (1)BDを求めよ。 (2)cos∠Bを求めよ。 (3)ADを求めよ。
- ベストアンサー
- 数学・算数
質問者からのお礼
ご返答ありがとうございます! なかなか閃かなくて困っていたので助かりました! 参考にして解いてみますね。本当にありがとうございました!