• ベストアンサー

場合の数です。

こんにちは。よろしくお願いいたします。 問題:男4人、女3人がいる。次の並び方は何通りあるか。 女のうち2人だけがとなり合うように7人が並ぶ。 私の解答でどこが間違ってるか教えてください。 参考書で他の解き方はわかりました。 私の解答。 どの女が二人ぺあになるか=3C2=3通り その女の並び方=2通り そして女二人を一つのグループと考えて、他の女・男を並べるのは=6P6=720 よって3×2×720=4920通り 参考書に載っていた解答は まず男を並べ(24通り)、○男○男○男○男○ の○に女二人がはいるのは3通り、この女の並べ方は2通り、そしてこの二人を○のどこにいれるかが5通り、残り1人の女を入れるのが4通り・・・あとは計算して・・・。 とこれはわかりました。私の何がだめだったか教えてください。よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

女性ABCとします。()内を初めに選んだ2人の組とすると、 (AB)Cと並ぶ場合とA(BC)と並ぶ場合が重複してしまいますね。 同様にACB、BAC、BCA、CAB、CBAが連続する場合にも重複が起こってしまいます。 そのことをしっかり考慮すれば答えはでるでしょうが、 手間を考えると、回答の考え方がよいかもしれませんね。

rurukirua
質問者

お礼

ありがとうございました!

その他の回答 (1)

  • hmaguri
  • ベストアンサー率14% (2/14)
回答No.2

途中まではいいと思いますが、そのやり方だと女性が3人いっしょに並んでしまう場合があります。なので、3人が一緒になって並んでしまう場合を差し引かなければなりません。

rurukirua
質問者

お礼

ありがとうございました!

関連するQ&A

  • 高校数学、場合の数

    男6人女6人12人を男2人女2人ずつの3つのグループに分ける。男のAさん女のBさんが一緒のグループに入る組み合わせは何通りか? (解答)2つの解法 (1)3つの組をP,Q,Rとする。A,BさんがPに入るとき、残りのメンバーの決め方は(5C1)^2、Qに入るメンバーの決め方は(4C2)^2、Rは自然と決まる。A,BがQ,Rに入る場合も考えて、(5C1)^2×(4C2)^2×3÷3! (2)A,BがP組に入るとする、Pに入るメンバーの決め方は(5C1)^2、Qに入るメンバーの決め方は(4C2)^2、Rは自然と決まる。PとRは区別できないので、(5C1)^2×(4C2)^2÷2! (疑問)(1)と(2)で組が区別できる、出来ないが違うのですが、どうして異なってくるのでしょうか?

  • 組み合わせの問題なのですが

    男6人、女3人をそれぞれ男2人、女1人からなる3つのグループに分ける分け方(ただしグループには人数以外の区別をつけないとする)なのですが、自分でやった計算とと解説が違っていました。答えは合っていたのですが。 (6C2・3・4C2・2)÷3!=90通り 普通に男2人女1人のグループをつくって3!で割っただけなのですが、解答では、 「3人の女それぞれに対して男2人を振り分けてグループを作ると考えれば、そのわけ方は、 6C2・4C2=90通り となっていました。問題文で「ただしグループには人数以外の区別をつけないとする」と書いてあったので、6C2・4C2=90通りを3!で割らないと行けないのではないでしょうか。また、私のやり方でも良いのでしょうか。よろしくお願いします。

  • 隣り合う順列

    隣り合う順列がイマイチわかりません 問題は 男2人、女3人の5人が1列に並ぶとき、次のような並び方は何通りあるか。 両端が女 という問題です 解答には まず、女2人が両端に並ぶ並び方は 3P2通り その各々に対し、男2人1組と残りの3人が間に並ぶ並び方は 3P3通り よって 3P2×3P3=3・2×3・2・1=36(通り) とありますが、どうしても女2人が両端に並ぶ並び方が3P2通り、というのが理解できません。 そもそも順列が良くわかってないのかも知れませんが、解る方がいれば教えていただきたいです。

  • 場合の数、並び方を教えてください。

    場合の数、並び方を教えてください。 男子2人、女子4人が1列に並ぶ時、 問1)並び方の総数は何通りあるか。 問2)男子二人が隣り合う並び方は何通りあるか。 回答1A) 1列に並ぶから円順列ではない。 男子とか女子とか条件がないから単に6人の人の並び方を考えればよい。 そしたら、6人の中から6人を取り出して並ばせる順列だから 6P6=720通り であっていると思います。 回答2A) 男男女女女女 女男男女女女 女女男男女女 女女女男男女 女女女女男男 5通り んー、なにも難しくないですが、なにかひっかけでもあるのでしょうか。 回答2B) もしかして、単なる男、女ではなく 男1 男2 女1 女2 女3 女4 というふうに個別というか固有でならばせよ ということですか。 というか、そもそも順列はすべて一人一人(一つ一つ)違うものをならばせるということですか。 そういうことなら 美味い考えが浮かびました。 男を隣り合わせるために男1.2を合体させて(男男)として一人とみなす。 (男男) 女1 女2 女3 女4 これで5人の中から5人を選んでならばせる順列にする。 5P5=120通り 忘れてならないのが (男男)は(男1 男2) と (男2 男1) 2通り の並び方に分解できる。 ここで、苦手な積の法則にあてはめられるのかどうか。 5人の中から5人を選んでならばせるという事柄Aの起こり方が120通り、 そのおのおのについて、(男男)は(男1 男2)と(男2 男1)に分解できるという事柄Bの起こり方が2通り、ここれを積の法則で 120×2=240通り でどうでしょうか。 積の法則に無理やり当てはめたかもしれません。自信がないです。 回答2C) 並び方の総数から何かの起こり方の場合の数を引く というのもありそうな気がしますが思いつきません。

  • 場合の数の問題です

    (1)「男3人、女3人を交互に並べるときの並べ方は何通りか」 (2)「男3人、女2人を交互に並べるときの並べ方は何通りか」 (3)「男3人、女3人が手をつないで輪になるとき交互に並べるときの並べ方 は何通りか」 (1)では3!・3!・2 (2)では3!・2! (3)では男一人を固定するとして、2!・3!になりますよね。 数学苦手なんでもはや丸暗記してるんですが・・・ どうして(1)の場合だけ男女男女男女か、女男女男女男かの2通りを考える必要があるんでしょうか???

  • 場合の数

    「9人のうち、5人が男、4人が女であるとする。3人、3人、3人の3つの組に分け、かつ、どの組にも男女がともにいる分け方は全部で何通りか」 という場合の余事象の出し方で、 i)男3人の組ができる分け方 5C3×(6C3×3C3÷2!)=100通り ii)女3人の組ができる分け方 4C3×(6C3×3C3÷2!)=40通り iii)男3人女3人の組ができる分け方 5C3×4C3×1=40通り (100+40)-40=100通り ということなんですが、例えばi)で5C3で男3人を選んだ後に残る2つの組は、 {女女女}{男男女}など同一視できないものもあるのになぜ2!で割れるのですか?

  • 大学入試問題 場合の数

    福岡大学 医学部の入試問題なんですが、全く分からないというわけではなく一応自分なりに答えは出せるんですが間違っています。なぜ間違っているか教えてください。 <問題> 大人3人、子供6人をa,b,cの3グループに分けるとき、どのグループにも子供も大人も少なくとも1人はいるように割り当てる方法は何通りか <僕の答え> ⅰ:大人3人をまず振り分ける→3! ⅱ:次に、abcに子供三人を1人ずつ割り当てる→6C3(子6から3選ぶ)×3! 3;最後に残りの3人を並べるがその3人はabcどれでも自由に割り当てられるから→3³ すべて掛け合わし3240×6。 <解答> 3240。 ⅱの3!がなければ解答と同じになるから、たぶんそこが間違っていると思うのですがなんでその3!がいらないのでしょう? 教えてください。 

  • 場合の数と確率

    同じ色の玉は区別できないものとし、空の箱があっても良いとする。赤玉6個と白玉4個の合計10個を、区別ができる4個の箱に分ける方法は何通りあるか? ↑この問題の解答は次のとおりです。 区別のできない6個の赤球を区別のできる4個の箱に分ける方法の数は、(6+3)!/6!・3!=84とおり。 区別のできない4個の白球を区別のできる4個の箱に分ける方法の数は、(4+3)!/4!・3!=35とおり。よって84×35=2940とおり。 正解は上記のとおりですが、次のような解答はどこが考え方が違うのでしょうか? 6個の○と4個の×と3本の┃の順列とみなし、○○┃○○┃○○×┃×××このような分け方の計算とし、(10+3)!/6!・4!・3!とすると全く答えが違います。 どなたか、ご教示お願いします。

  • 部屋分けする[場合の数]の問題

    Aの部屋とBの部屋に、7人を分ける方法は何通りあるか? 空室はあってもよい。 と言う問題で、 自分の解き方としては、 (A,B)=(0,7),(1,6),(2,5),(3,4),(4,3)(5,2),(6,1),(7,0) と言う風に分けて、 それぞれ計算、 ・(A,B)=(0,7)の時、1通り ・(A,B)=(1,6)の時、7C1=7通り、 ・(A,B)=(2.5)の時、7C2=21通り、 ・(A,B)=(3,4)の時、7C3=35通り、 ・(A,B)=(4.3)の時、7C4=35通り、 ・(A,B)=(5.2)の時、7C5=21通り、 ・(A,B)=(6.1)の時、7C6=7通り、 ・(A,B)=(7.0)の時、1通り、 なので、1+7+21+35+35+21+7+1=128通りで、一応正解なのですが、 解答解説を見ると、 2~7=128通り(←異なる2個から重複を許して7個取り出して並べる順列の総数と同じ} とあります。 異なる2個から7個を取り出すって何でしょうか? 例えば、男/女の2種類のグループから7人取り出すみたいなことでしょうか? 2つのAの部屋とBの部屋に「入れる」のに、「取り出して並べる順列」の話が何故出てきたのですか?

  • 場合の数です。。

    ご多忙の中失礼します。 宜しくお願い致します。 11人の生徒の中から5人の委員を次のように選ぶ方法は何通りあるか。 という問題で、 1.何も条件をつけず選ぶ。 これは 11C5=462通り 2.A、Bを除いて選ぶ。 これは9C5=126通り 3.AまたはBの少なくとも1人が含まれるように選ぶ。 これの解答が、 1(462)-2(126)=336通りと書いてあるのですが、わかりません。少なくともだから、それではいけないのでは?解答があってるならば、ご説明いただけないでしょうか?まちがってるなら、よい解答をおしえていただけませんでしょうか? 宜しくお願い致します。