• ベストアンサー

留数定理を用いた積分

pino-punoの回答

回答No.4

斜めの線積分は実軸の定数倍になるから、0からπ/3で留数定理を使うのが楽だよ! 極はx^6+1=Oとなるxの点を考えてその点に近づけたときにx^2/(x^6+1)が∞になる点のこと。

関連するQ&A

  • 留数定理による実定積分の計算について

    留数定理による実定積分の計算について 現在複素積分について勉強中のものです。 ∫^{+∞}_{-∞}f(x)exp{itx}dxという形の積分の計算なのですが t>0については ∫^{+∞}_{-∞}f(x)exp{itx}dx=2πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が偶関数のとき ∫^{+∞}_{0}f(x)cos(tx)dx=πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が奇関数のとき ∫^{+∞}_{0}f(x)sin(tx)dx=πΣ^{m}_{k=1}Res{f(z)exp{itz}} となりますが t<0のときはどうなるのでしょうか。 マイナスになるだけでしょうか。 よろしくお願いします。

  • 留数定理による実定積分の計算について

    留数定理による実定積分の計算について 現在複素積分について勉強中のものです。 ∫^{+∞}_{-∞}f(x)exp{itx}dxという形の積分の計算なのですが tを実数とし,kはΣの添え字,mは極の個数,iは虚数とします. このときtがt<0のとき ∫^{+∞}_{-∞}f(x)exp{itx}dx=-2πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が偶関数のとき ∫^{+∞}_{0}f(x)cos(tx)dx=πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が奇関数のとき ∫^{+∞}_{0}f(x)sin(tx)dx=-πΣ^{m}_{k=1}Res{f(z)exp{itz}} となる これで合っていますでしょうか? よろしくお願いします。

  • 積分値を留数定理で求める方法

    問題:次の積分の値を求めよ ∫exp(-z)/(z(z-1)(z-3))dz 但し、複素積分は円周 |z|=2 上半時計回りに行うものとする。 上の問題を、留数定理を用いて以下のように解きました。 C : z=2×exp(iθ) 極は0、1、3でそれぞれ1位であり、 Res[f(z),z0]=lim[z→z0] (z-z0)f(z) であるから R(1)=(1/3-1/12)×exp(-1) R(3)=(1/9-1/4)×exp(-3) R(0)=1/2-1/18 よって、留数定理より、 与式=2πi(R(0)+R(1)+R(3)=2πi(4/9 - (1/4)×exp(-1) - (5/36)×exp(-3)) 質問したいことは、 1、この問題を留数定理で解く方針は正しいか 2、特異点が極かどうか(極でないとRes[f(z),z0]=lim[z→z0] (z-z0)f(z)が使えないので) 3、留数定理の使い方が正しいか 4、上記の解答は正しいか です。回答よろしくお願いします。

  • 留数定理について質問です。

    留数定理について質問です。 次のような問題が出題されました。 「Fourier積分を利用し微分方程式の主要解を求めよ。 (d^2/dx^2)G+κ^2G=-δ(x-ξ)」 解答の詳細は省略しますが G=(1/2π)∫dk{exp[ik(x-ξ)]}/(k^2-κ^2) の積分を[-∞,∞]で計算することに帰着します。(これまでのところで、δはδ関数、iは虚数単位です。) これをkの複素平面上で留数定理を用いて計算するという定石的なやり方なのですが、積分路の取り方としてx-ξ>0なら虚軸が正の半円+実軸上、x-ξ<0なら虚軸が負の半円+実軸上というループを採用します。極が実軸上にあるのでx-ξ>0の場合のループではk=κのみをループ内に含むように、x-ξ<0の場合はk=-κのみを含むように選ぶと Res(κ)=exp[iκ(x-ξ)]/(2κ)より x-ξ>0のときG=i{exp[iκ(x-ξ)]}/(2κ) とあります。ここまではいいのですがx-ξ<0の場合、 「同様に、G=i{exp[-iκ(x-ξ)]}/(2κ) (x-ξ<0)」 となっています。自分の計算ではG=-i{exp[-iκ(x-ξ)]}/(2κ)となるのですが、何故合わないのか分かりません。留数の公式に当てはめるとexpの肩と全体の符号が極の選び方で逆になるように思うのですが、解答では全体の符号が変化していないように思います。 x-ξ<0の場合の計算の詳細を教えていただけないでしょうか?

  • 留数定理を用いた有理関数の無限積分

    教科書の例題に ∫[-∞→∞] 1/(x^2+1)dx という問題の解き方があります。そこには、 実軸上の線分[-r,r]と、原点を中心とする上半円Cr:|z|=rを結ぶジョルダン曲線Cを考える。無機は正方向とする。留数定理によれば ∫[C] f(z)dz = ∫[-r→r] f(x)dx + ∫[Cr] f(z)dz = 2πiR(i) (ただし、R(i)はz=iにおける留数) である。R(i) = 1/2i であるから、 ∫[-∞→∞] f(x)dx = π-lim[r→∞] ∫[Cr] f(z)dz の形に書けるから、最後の項=0 が示されればよい。 と書いてあります。でも、私にはなぜ 最後の項=0 を示す必要があるかがわかりません。留数定理より、 与式 = 2πiR(i) = π と求めてはいけないのでしょうか?

  • 留数定理の質問です

    ∫[x=0→x=∞] dx exp(iax) / b-x^2   の積分値って留数定理で求まりますか?もしできるのならば、やり方を教えてください。よろしくお願いします。

  • 留数定理による実積分の計算

    留数定理を用いて実積分を行いたいのですが,以下の問題がどうしても証明できません。 ∫[0→∞](x^a/(x^2+1))dx=(π/2)/(cos(πa/2)) (0<a<1) 積分路は C1:実軸上をε→R,C2:半径Rの円上を0→2π,C3:実軸上をR→ε,C4:半径εの円上を2π→0 です。 途中計算を詳しく載せていただけるとありがたいです。

  • 留数定理が分かりません

    留数定理を使って∫(cos(x))^(2n)dx 積分範囲は0から2π、nは正の整数を解けという問題です。cos(x)=(1/2)(z+1/Z)と置いてやろうと思いましたが、お手上げです。どなたか詳しい方教えてください。宜しくお願いします。

  • ロピタルの定理を使った留数の求め方

    ロピタルの定理を使った留数の求め方 質問は2つあります。 (1)式の複素積分を、下図に示した複素平面状の閉じた経路に沿って行うことを考える。 ここでa(≠0)は実数で、図中のkは十分大きい(k≫|a|)整数とする。 (質問1) 留数を求めたいのですが、極がn(∈Z)の場合の留数の求め方が不安です。 数式のように計算しました。 途中でロピタルの定理を使っているのですが、 この使い方はあっているでしょうか? ロピタルを使うときは、第2因子の分母z^2+a^2も微分しなければならないと思うのですが。 (質問2) k→0としたとき、積分の値がゼロとなることを示したいのですが、 (6)式以降どうやったらいいかわかりません。 どなたかご教授いただけるとうれしいです。

  • 留数定理を使った実積分の計算

    留数定理を使った実積分の計算 下記積分を、留数を使って計算しました。 図のように上半面の留数を使ったときと、 下半面の留数を使ったときでは、値がマイナス違いました。 つまり、-3π/80になってしまいました。 これは正しい間違いなのでしょうか? そしたら、なぜマイナスがついてしまったのでしょうか? 教えていただけるとうれしいです。