- 締切済み
フーリエ級数
こんにちは。つぎの問題がわからず困っています。 周期2πの奇関数f(x)がある。この関数はf(x)=Σbn・sin(nx) (nは1から∞まで) とフーリエ級数展開されるものとする。 (1)関数f(x)がf(x+π)=-f(x)の関係を満たすためのbnの条件を導け。 (2)(1)のとき、関数g(x)=f(x+4π/3)-f(x-4π/3)を、bnを用いてフーリエ級数展開せよ。というもんだいで (1)は与式のxにx+πを入れるとsinがnx+nπとなり、nが奇数のとき この値は-sinnxとなり偶数のときsinnxとなることから、bnの条件はnが奇数のとき、bnは正、偶数のときbnは負という条件にしました。 (2)は変形して(1)の条件を使いいろいろ変形してみましたが、どのようにしてもうまくいきません。 どなたかおねがいします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- chiezo2005
- ベストアンサー率41% (634/1537)
回答No.1
単にf(x)に代入すればよいと思います。 sin(n(x+4π/3))を加法定理でcnsin(nx)+dncos(nx)の形にすれば 良いだけだと思いますが・・・