• 締切済み
  • すぐに回答を!

微分方程式

今、大学の物理の宿題をしているんですが、次の微分方程式が解けないんです。誰か解法を教えてください!! x″=-0.4(x')3乗 という微分方程式です。線形微分方程式しか習っていないため、まだ非線形のやつは分からないんです。どうかお願いします。」

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

x'=u, a=0.4 と置くと du/dt=-au^3 変数分離形で -du/u^3=adt -∫du/u^3=∫adt 1/(2u^2)=at+C1 u^2=1/{2(at+C1)} u=±1/√{2(at+C1)} u=dx/dt=±1/√{2(at+C1)} x=±(1/a)√{2(at+C1)}+C2 [=A√(at+C1)+C2 の形] 符号と積分定数は適当に決めてください.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

変数分離形の形に持ち込めば良かったんですね!よく分かりました!!ありがとうございます。

関連するQ&A

  • 線形微分方程式について

    微分方程式の分類に関して、 線形…y(x)及びその微分について一次までのもの。 と手元の資料には書いてるんですが、 これはy(x)もしくはdy(x)/dx のみを含んでいる、ということですか? 調べてみると、斉次2階微分方程式なるものもあるようで困っています。(斉次ということは線形ですよね?2次が含まれていていいんでしょうか?)

  • 1階線形微分方程式

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x

  • 物理の微分方程式の解き方がわかりません・・

    大学の物理で出された問題についてです。 微分方程式自体がわからなくて、解き方がさっぱりわかりません どなたかヒントでも解法でもいいので教えてください。 よろしくお願いします。 以下問題です。 ---------------------------- 質量mの物体がx軸上を運動しており、物体の速度vは、 m dv/dx + v = 0 ・・・(*) で与えられている。次の問いに答えよ。 (1) 微分方程式(*)から速度 v(t) = dx(t)/dt を求めよ。 (2) t = 0 のとき、x = 0, v = v' として x(t) を求めよ。 (3) 微分方程式(*)で表されるような物理現象の例を一つあげ、簡単に説明せよ。 ----------------------------- (1)から解けませんでした。 (3)の問題を解けるような、(*)で表される運動のイメージもつかめず、困っています・・・ 返答お待ちしています。

  • 非線形微分方程式の問題です

    非線形微分方程式について質問です。 とある大学院試験の数学の問題で次のような問題がありました。 y = dy/dx (x) + 4(dy/dx)^2 この微分方程式は (dy/dx)^2 の項があり、非線形微分方式です。 非線形微分方程式は解を求めるのが大変難しいだけでなく、解が求められないものもたくさん存在します。 私はこの問を解けませんでした。 解くことは可能なのでしょうか。 お願いします。

  • 常微分方程式の問題

    常微分方程式の問題でいくつか解けなかったところがあるので教えていただきたいです。 この章で扱っているのは 変数分離系・同時系・線形1階微分方程式・完全微分形・線形2階微分方程式(同次形)・線形2階微分方程式(非同次形) を扱っていました。 その内、一般解を求める以下の問題 (1)dy/dx=xe^-y (2)x(dy/dx)-y=1 (3)(2y-x^2)dx+(2x-y^2)dy=0 と 与えられた条件をそれぞれ満たす微分方程式の解を求める以下の問題 (1)dy/dx=y/x (x=1のときY-2) (5)y''+5y'+6y=0 (x=0のときy=0、y'=1) の問題が解くことができませんでした。 どなたか解法をわかりやすく教えていただけないでしょうか?

  • 非線形微分方程式ax'+bx+cxx'+d=0

     線形微分方程式にはある程度決まった解法があるのですが、 非線形微分方程式は、これといった解き方がなく、 ケースバイケースで解いていかなければいけません。 非線形微分方程式ax'+bx+cxx'+d=0は解けるものなのでしょうか。 ただし、xはt(時間)の関数です。x'=dx/dtを意味します。  解き方が分かる方がいらっしゃいましたらよろしくお願いいたします。

  • <微分方程式>

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題を教えて下さい。 よろしくお願いします。

  • 偏微分方程式 ラプラス方程式 ポアソン方程式

    微分方程式で用いられる線形,非線形の意味がよくわかりません。 どのように区別されるのでしょうか? また、ラプラス方程式は、一階の偏微分方程式の例でよくでてきて、 ポアソン方程式は、二階の偏微分方程式の例でよくでてきます。 ラプラス方程式,ポアソン方程式はどちらも線形なのでしょうか? テキストや参考書にある解法に習えば、例題や練習問題は解けるのですが、 用語の意味がまるで理解できていません・・・ ご回答よろしくお願い致します。

  • 微分方程式

    y’-2/xy = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題を教えて下さい。 よろしくお願いします。

  • 微分方程式

    次の微分方程式を解け x^2 ・dy/dx  + y = 0 という問題です。 x^2はxの2乗です。