• ベストアンサー

2変数関数の偏微分がわかりません><

授業のノートを一部なくしてしまい、問題と解答はあるのですが、過程や適用する公式がわからなくなってしまいました。以下の4問です。 Q1 z=y/1+x^2 A Zx=-2xy/(1+x^2)^2 Zy=1/1+x^2 Q2 z=xe^(x+y) A Zx=(1+x)e^(x+y) Zy=xe^(x+y) Q3 z=ylog(x^2+y^2+1) A Zx=2xy/x^2+y^2+1 Zy=log(x^2+y^2+1)+2y^2/x^2+y^2+1 Q4 z=sin(xy) Q4に関しては答えもなく、いろいろ公式も検索してみましたが、どうやればいいのかわかりません。どなたか過程や公式がわかる方いらっしゃいましたら返答お願いしますm><m

質問者が選んだベストアンサー

  • ベストアンサー
noname#75273
noname#75273
回答No.2

例えば、z = sin ( 3x + 2y ) の場合を考えると、 Zx = cos ( 3x + 2y ) * (3 + 0)   = 3 * cos ( 3x + 2y )  となるのは分かります? 分かっていれば、Q4 は説明するまでもなく解けますが・・・。

yocchi00
質問者

お礼

回答ありがとうございます。 その例から考えると、z = sin (X + Y)のとき Zx = cos (X + Y) * (X' + Y') ということのようですね。ということはQ4は Zx = cos(xy) * (y) = ycos(xy) , Zy = cos(xy) * (x) =xcos(xy) となるということのよですね。Q4については解決できたようです。ありがとうございましたm--m

その他の回答 (3)

  • 774danger
  • ベストアンサー率53% (1010/1877)
回答No.4

そこまでできれば、あとは、 ・1/x, e^x, log(x)の微分 ・y=f(x)g(x)とおくと、y'=f'(x)g(x)+f(x)g'(x) がわかっていれば全部解けるでしょう

yocchi00
質問者

お礼

回答ありがとうございますm--m いただいたアドバイスを基に、冷静になってもう一度解いてみたら、すべて解答に結びつけることができました。対数の微分の公式では { log|x| }' = 1/x という公式を適用すると思っていたのですが、検索して調べていたところ { log|f(x)| }' = f'(x)/f(x) を適用するのだということに気付きました。道理で解けなかったわけです。 本当にありがとうございました^^

  • 774danger
  • ベストアンサー率53% (1010/1877)
回答No.3

> Q4 は (sinX)'=cosX という公式を利用するんだと思いますが、Xをaxと考えるとして、それをどうすればいいのかがわからないのです。。 X=axと置いて、z=sin(ax)を微分すると、 dz/dx = dz/dX・dX/dxになります sin(πx)とかを微分したことはないですか?

  • 774danger
  • ベストアンサー率53% (1010/1877)
回答No.1

普通の微分に関しては理解してるんでしょうか? Zxというのは、xだけを変数としてみて、yは定数と見て微分すればいいだけです Q4なんかこの中では一番簡単な気がしますが.......... z=sin(ax)をxについて微分しろ、と言っているのと一緒ですので

yocchi00
質問者

お礼

回答ありがとうございます。 ある程度は理解しているつもりです。しかし公式と少し違うだけで混乱してしまうはやはり理解できていないのでしょうか・・ Q4 は (sinX)'=cosX という公式を利用するんだと思いますが、Xをaxと考えるとして、それをどうすればいいのかがわからないのです。。 もし馬鹿正直に当てはめるとすると、Zx=cosyx Zy=cosxy となるんでしょうか、、

関連するQ&A

  • 合成関数の偏微分法を用いた解き方

    いつもお世話になっています。 以下の問題を解いてみたのですが、あっているのか自信がもてません。 (特に、(4)(5)のsinθ,cosθが含まれるケース) 間違いなど、あればご指導のほど、よろしくお願いいたします。 【問題】 「合成関数の偏微分法」を用いて、継ぐの合成関数についてZu,Zv(またはZθ,Zr)を求めよ。 (2) z=x^2-y, x=u+v, y=uv Zu = Zx・Xu + Zy・Yu = 2x・1+(-1)・v=2x-v Zv = Zx・Xv + Zy・Yv = 2x・1+(-1)・u=2x-u (3) z=e^x・sin(y), x=u-v, y=uv Zu = Zx・Xu + Zy・Yu = e^x・sin(y)・1+e^x・cos(y)・v = e^x・sin(y)+v・e^x・cos(y) Zv = Zx・Xv + Zy・Yv = x^x・sin(y)・(-1)+e^x・cos(y)・u = -e^x・sin(y)+u・e^x・cos(y) (4) z=x+y, x=r・cosθ, y=r・sinθ Zθ= Zx・Xθ + Zy・Yθ = (1)・(-r・sinθ)+(1)・(r・cosθ) = (-r・sinθ)+(r・cosθ) = -r(sinθ-cosθ) Zr = Zx・Xr + Zy・Yr = (1)・(cosθ)+(1)・(sinθ) = sinθ+cosθ (5) z=x^2+2xy, x=r・cosθ, y=r・sinθ Zθ= Zx・Xθ + Zy・Yθ = (2x+2y)・(-r・sinθ)+(2x)・(r・cosθ) = 2{(x+y)(-r・sinθ)+x(r・cosθ)} = -2r{(x+y)(sinθ)-x(cosθ)} = -2r(x・sinθ+y・sinθ-x・cosθ) = -2r(r・cosθ・sinθ+r・sinθ・sinθ-r・cosθ・cosθ) = -2r^2(cosθ・sinθ+sinθ・sinθ-cosθ・cosθ) = -2r^2(sin^2θ+cosθsinθ-cos^2θ) Zr = Zx・Xr + Zy・Yr = (2x+2y)・(cosθ)+(2x)・(sinθ) = 2{(x+y)・(cosθ)+(x)・(sinθ)} = 2{x・cosθ+y・cosθ+x・sinθ} = 2{r・cosθ・cosθ+r・sinθ・cosθ+r・cosθ・sinθ} = 2r{cosθ・cosθ+sinθ・cosθ+cosθ・sinθ} = 2r{cos^2θ+2・sinθ・cosθ} = 2r・cosθ{cosθ+2・sinθ} 以上、よろしくお願いします。

  • 「第2次偏導関数」の問題です。

    「第2次偏導関数」の問題です。 (1) z=e^(x^2+y^2) (2) z=sinxy (3) z=log(√x^2+y^2) 合ってるかどうか確かめてください。 お願いします。 (1)Zx=2xe^(x^2+y^2) Zy=2ye^(x^2+y^2) Zxx=2e^(x^2+y^2)(2x+1) Zxy=Zyx=4xye^(x^2+y^2) Zyy=2e^(x^2+y^2)(2y+1) (2)Zx=ycosxy Zy=xcosxy Zxx=-y^2sinxy Zxy=Zyx=cosxy-xysinxy Zyy=-x^2sinxy (3)Zx=x/(x^2+y^2) Zy=y/(x^2+y^2) Zxx=-{(x^2-y^2)/(x^2+y^2)^2} Zxy=Zyx=-{2xy/(x^2+y^2)^2} Zyy=(x^2-y^2)/(x^2+y^2)^2

  • 陰関数の問題

    xy+2sin(yz)=1から定まるx,yの陰関数z=g(x,y),y≠y(x)についてzx,zyについて求める問題がわかりません。 やり方も含めご教授よろしくお願いします。

  • 偏微分の問題なのですが

    z=log|cos(x-2y)| を偏微分で解く時にはどうやってzxとzyを求めればいいのでしょうか?? zxの解き方を教えていただいたらzyは自力で頑張りますのでよろしくおねがいします!!

  • 合成関数の微分

    大学1年のものです。 次のような問題に出くわしました。 Z=f(x,y) x=rcosθ y=rsinθのとき次の関係式を示せ。 Zxx+Zyy=Zrr+(1/r)Zr+{1/(r^2)}Zθθ ここで、 Zx=∂Z/∂x  Zxx=∂^2Z/∂x^2 です。(r、θについても同様) まず、 Zr=Zx・cosθ+Zy・sinθ …(1) Zθ=-Zx・rsinθ+Zy・rcosθ …(2) ですよね? ここで疑問がわきました。 (2)でrsinθ=x、rcosθ=yと置き換えるのと置き換えないのとでは、Zθθが違う思います。 そこで教科書の答えを見ると、 置き換えて微分したほうの答えが書いてあったので、 置き換えて計算しないとダメなのかと思ったのですが、 (1)においてはcosθ=x/r、sinθ=y/rと置き換えないのでしょうか? というか、教科書には置き換えないほうの結果が載っていました。 自分でもcosθは置き換えといて、置き換えた後のrがそのままなのはおかしいと思いますが、なぜrcosθを置き換えてcosθを置き換えないのかがわかりません。 質問を要約すると なぜrcosθを置き換えてcosθを置き換えないのか? ということです。 ちなみに教科書に載っていた答えは、 Zrr=Zxx(cosθ)^2+Zyy(sinθ)^2+2Zxy・sinθcosθ Zθθ=Zxx・r^2(sinθ)^2+Zyy・r^2(cosθ)^2-2Zxy・r^2・sinθcosθ-(Zx・rcosθ+Zy・rsinθ) です。 非常にわかりにくい文章だとは思いますが、教えていただければ助かります。

  • 偏微分について

    (x-a)/(z-c)=f((y-b)/(z-c))の時 (x-a)zx+(y-b)zy=z-c の証明問題なのですが わからないので教えてください。 尚、問題文中のzxとzyはzをx、yで偏微分するということです。

  • 指数やLogが含まれる2変数関数 f(x,y)の偏微分について

    こちらの皆様のおかげで、2変数関数 f(x,y)の偏微分の解き方が ようやく理解できました。大変ありがとうございました。 それで、追加の質問で申し訳ないのですが、 以下の解き方があっているか、ご指導のほど、よろしくお願いします。 【問題】 次の2変数関数f(x,y)を偏微分せよ。 すなわち、関数f(x,y)のxおよびy関する変動関数fx(x,y)およびfy(x,y)を求めよ。 (5) Log √(x^2+y^2+1) 先に質問をした回答より、 fx(x,y)(x^2+y^2+1)=x/√(x^2+y^2+1) fy(x,y)(x^2+y^2+1)=y/√(x^2+y^2+1) また、(Log x)'=1/xの公式と合わせて, Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/x Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/y (6) e^(xy) fx(x,y)=e^(xy) fy(x,y)=e^(xy) (7) sin xy fx(x,y)=cos xy = y * cos x fy(x,y)=cos yx = x * cos y (8) e^x * sin y fx(x,y)=e^x * sin y fy(x,y)=e^x * cos y (9) x^2 cos xy 積の微分の公式 より、 fx(x,y)=2x * cos xy + x^2(-sin xy) = 2x cos xy -x^2 sin xy fy(x,y)=x^2 * ( -sin xy) = -x^2 sin xy 以上、適用する公式などにおかしいところがあれば、 ご指導お願いします。

  • 指数やLogが含まれる2変数関数 f(x,y)の偏微分について

    こちらの皆様のおかげで、2変数関数 f(x,y)の偏微分の解き方が ようやく理解できました。大変ありがとうございました。 それで、追加の質問で申し訳ないのですが、 以下の解き方があっているか、ご指導のほど、よろしくお願いします。 【問題】 次の2変数関数f(x,y)を偏微分せよ。 すなわち、関数f(x,y)のxおよびy関する変動関数fx(x,y)およびfy(x,y)を求めよ。 (5) Log √(x^2+y^2+1) 先に質問をした回答より、 fx(x,y)(x^2+y^2+1)=x/√(x^2+y^2+1) fy(x,y)(x^2+y^2+1)=y/√(x^2+y^2+1) また、(Log x)\'=1/xの公式と合わせて, Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/x Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/y (6) e^(xy) fx(x,y)=e^(xy) fy(x,y)=e^(xy) (7) sin xy fx(x,y)=cos xy = y * cos x fy(x,y)=cos yx = x * cos y (8) e^x * sin y fx(x,y)=e^x * sin y fy(x,y)=e^x * cos y (9) x^2 cos xy 積の微分の公式 より、 fx(x,y)=2x * cos xy + x^2(-sin xy) = 2x cos xy -x^2 sin xy fy(x,y)=x^2 * ( -sin xy) = -x^2 sin xy 以上、適用する公式などにおかしいところがあれば、 ご指導お願いします。

  • 2次偏導関数の問題

    Z=xy^2/(x^2+2y)の2次導関数を解いたのですが、 Zx={y^2(2y-x^2)}/(x^2+2y)^2 Zy={2xy(x^2+2y-y^2)}/(x^2+2y)^2 となりました。 ここからZyyを求めると答えがおかしくなってしまいました。 どなたか教えてください。

  • 偏微分を用いた合成関数の証明問題

    次のことを証明せよ。 Y(∂Z/∂X)=(1/2)(∂Z/∂Y)のとき、ZはX+Y^2だけの関数である。 という問題で、 u=X+Y^2,v=X,Y=(u/v)^1/2とおき、 Zv=ZxXv+ZyYv =Zx+Zy*(1/2)*(u/v)^(-1/2)*(-u/v^2) =Zx-Zy*(1/2)*(1/Y)*{(X+Y^2)/X^2} と、ここまで解いたのですがこの後がわかりません。 教えてください。