剰余群についての質問

このQ&Aのポイント
  • 剰余群についての質問です。KとMの定義より、 K⊃M. また a∈K ⇒ a^2 ⊂ M (証明ははぶく) このとき K/M ∋ ∀a + M ⇒ (a + M)^2 = 1である。つまり(K/M)∋a+M の位数は2である。
  • 剰余群についての質問です。KとMの定義より、 K⊃M. また a∈K ⇒ a^2 ⊂ M (証明ははぶく) このとき K/M ∋ ∀a + M ⇒ (a + M)^2 = 1である。つまり(K/M)∋a+M の位数は2である。
  • 剰余群についての質問です。KとMの定義より、 K⊃M. また a∈K ⇒ a^2 ⊂ M (証明ははぶく) このとき K/M ∋ ∀a + M ⇒ (a + M)^2 = 1である。つまり(K/M)∋a+M の位数は2である。
回答を見る
  • ベストアンサー

剰余群

剰余群についての質問です。 説明の準備として以下を定義する。 n = Π(p|n) p^e(p) (nの素因数分解) K = {a∈(Z/nZ)* |gcd(n,a) = 1, a^m ≡ ±1 mod p^e(p),∀p|n} M = {a∈(Z/nZ)* |gcd(n,a) = 1, a^m ≡ 1 mod n} とします。 (本来は、mに意味があるのですが、説明が煩雑になるため、ここでは適当な自然数とみてください) KとMの定義より、 K⊃M. また a∈K ⇒ a^2 ⊂ M (証明ははぶく) ------ここからが質問 このとき K/M ∋ ∀a + M ⇒ (a + M)^2 = 1である。 つまり(K/M)∋a+M の位数は2である。 と続くのですが、 K/Mとはどのような集合を考えたのでしょうか? a + M という剰余類も理解できませんでした。 アドバイスいただけないでしょうか。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

おそらく、K、M は一般的な整数の乗法から自然に定義される積について群と見ているのですよね。 なので、a + M という「表記」が不適切なだけだと思います。 それから「位数が 2 である」となっていますが、「位数は 2 または 1 」の間違いですね。

ilnmfay
質問者

お礼

回答ありがとうございます。 表記が不適切なこと気づきました。部分群、剰余群の考え方に慣れていなかったため混乱していました。ご指摘感謝いたします。

関連するQ&A

  • 剰余群

    [m]∈Z/nZかつ[k]∈Z/nZだったら[m]=[k]ですか? Z/nZは剰余群です。[m]=m(mod n)です。

  • 巡回群の生成元について

    お世話になります。よろしくお願いします。 「加法群Z、整数n≧0の時 商群Z/nZは、1を含む剰余類によって生成される位数nの有限巡回群である。(代数系入門 松坂和夫著 p.78)」 とあるのですが、 商群Z/nZの1を含む剰余類は{1,1±n,1±2n,・・・}、 2を含む剰余類は{2,2±n,2±2n,・・・}であり、 1を含む剰余類{1,1±n,1±2n,・・・}を ある整数kでk倍しても2を含む剰余類{2,2±n,2±2n,・・・} にはならないと思うので、 全ての元が生成元aの整数k倍で表される(加法の場合)という巡回群の定義に合わず、 「商群Z/nZは、1を含む剰余類によって生成される」というのがおかしいとおもうのですが、どうでしょうか? どなたか私の考えの間違いをご指摘ください。 よろしくお願いします。

  • 既約剰余類群の証明

    1つめは剰余類の掛け算。2つめは互除法の原理がわからないので質問します。 読んでいる本では、(a,b)でaとbの最大公約数を表すことにし、(k,n)=1⇔ kとnは互いに素。 ̄0(本では0の上に ̄)を余りが0の類としています。 定義 Z/nZの部分集合 { ̄K|(k,n)=1,1≦k≦n-1}は×に対して群になっている。これを(Z/nZ)*と書き、既約剰余類とよぶ。と書かれていて。 ×に関して閉じていることを確認しましょう。nと互いに素であるk,lがあるとき、その積klもnと互いに素になります。klをnで割った商をq,余りをmとすると、 kl=qn+mと書くことができます。kl≡qn+m (mod n) ∴kl≡m (mod n)より、ここからが1つめのわからない計算です。 ̄k× ̄l= ̄m 自分は、n=10,k=3,l=9,m=7 3×9=2×10+7として3を2で割った余り、9を2で割った余りそれらの積が、7を2で割った余りに等しいかを計算したのですが、2以降3,4,5・・・nについても成り立つと思っていました。しかし、n=10,k=3,l=9,m=7のとき、3と9を3で割った余りの積0、7を3で割った余り1と両辺は一致しません。この場合 ̄k× ̄l= ̄mは3を10で割った余り、9を10で割った余りそれらの積が、7を10で割った余りに等しいかを計算したときだけ成り立つことを書いているのかがわかりません。 ̄k× ̄l= ̄mの具体的な計算を教えてください。またこの後が、2つめのわからない点です。互除法の原理 a,bを自然数とするaをbで割った余りがrのとき、(a,b)=(b,r) より(m,n)=(kl,n)=1もわかりません。m=kl-qn よりmをnで割った余りkl(klはnと互いに素)から、(m,n)=(n,kl)と考えました。kl≡m (mod n)より単純にmをklに書き換えただけとも思いました。(m,n)=(kl,n)=1を説明してください。 本では、(m,n)=(kl,n)=1よりmもnも互いに素になります。ですから、×について閉じています。と続きます。

  • 代数の問題です。

    大学の代数でこのような問題がでて きて、わからないので教えてくださ い 。よろしくお願いします。加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 代数の問題です。

    加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 数学

    数学の問題です。 (1)x^2+1≡(mod19)を解け (2)a∈(Z/nZ)*の位数をdとする。a^k≡1(modn)⇔k≡0(mod d)を示せ。 (3)P=29で位数11の元は何個あるか。 求め方を教えてください 宜しくお願いします

  • 対称群

    nを2以上の自然数とする。 X:={0,1,2、・・・n-1}= Z/nとおく 0:X→Xを、a →3a mod n とする。 (1)0が単射となる必要十分条件をnについての言葉で表せ (2)0が全単射となる時、0とn元の置換とみて、0をSnの部分集合とみなす。 n=8のとき、0の位数を求めよ (2) 再びnを一般の自然数とし、(1)の条件が満たされているとする。(2)で定義されたSnにおける位数が、(Z/n)* における3の位数と等しいことを示せ (3)はまったく手がかりすらつかめませんでした・・・ めんどくさい場合は、(3)だけ回答お願いします。 わからないので教えてください、よろしくお願いします

  • 2次体の整数環での既約剰余類群はありますか?

    有理整数環Zの剰余環Z/mZの部分集合 (Z/mZ)^*={[a]∈Z/mZ|a∈Z、gcd(a,m)=1} は乗法に関して群をなし、既約剰余類群と呼ばれます。 この整数環Zに対して、2次体の整数環Z[ω]で考えると、 剰余環はイデアルAを用いて、Z[ω]/Aとなりますが、 既約剰余類群に対応するものはあるのでしょうか? 2次体の整数環Z[ω]では、いつでも最大公約数があるとは限らないですが、 一意分解環(UFD)では最大公約数があるので、そのときは 既約剰余類群の対応物があるように思うのですが。 あるのでしたら、名前とか参考サイトを教えていただけないでしょうか? ないのでしたら、なぜないかを教えていただけないでしょうか。

  • 剰余の問題について

    基本情報技術者試験の問題にて、 pを2以上の整数とする。任意の整数nに対して、 n=kp+m (0 <= m < p) を満たす整数kとmが一意に存在する。このmをnのpによる剰余といい、 n mod pで表す。(-10000)mod 32768に等しくなるものはどれか。 ア -(10000 mod 32768) イ (-22768)mod 32768 ウ 10000 mod 32768 エ 22768 mod 32768 という問題があります。 この問題の解答は「エ」となるのですが、 解き方がどうしても理解することができません。 解説では (-10000)mod 32768と等しいのは 32768+(-10000)=22768から 22768mod32768となる。 と書いてあるのですが、このように解答していく プロセスがさっぱり見えてきません。 この解法の仕方をレクチャーしていただけないでしょうか。

  • 乗群の位数とラグランジェの定理

    (mod p)の剰余類で乗群G*をつくるとき,(pは素数) 0を含む剰余類は除くので,|G*|=p-1かと思います. a ∈ G*で,巡回部分群Hを生成すれば, H=G*であることも確認できます. ただ,ここでどうしてもわからないことがあります. G*の位数も,Hの位数もp-1で,-1されるために一般に素数にはなりません. ラグランジェの定理から位数が素数の有限群が真部分群を持たないことがわかりますが, G*の位数は,p-1で素数にならないため,真部分群を持ってもよさそうな気がします. どこに間違いがあるのでしょうか?