• ベストアンサー
  • 暇なときにでも

極限値

(1) lim[n→∞]√(x+3)-√(x)/√(x+2)-√(x+1) 分子有理化をして、 分子分母に√(x+3)-√(x)をかけて、 lim[n→∞] 3 /{√(x+2)-√(x+1)}{√(x+3)-√(x)} さらに分子分母をxで割りました。 3/∞になって0になります。 しかし、解答は3です。 (2) 数列{a_n}の極限値を求める。 a_n=1^2+2^2+…+n^2/n^3 こちらは全く分かりません。 分子分母をn^2で割りましたが、 なにも進みません…。 なにかヒントをお願いします。

noname#62377

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数48
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • info22
  • ベストアンサー率55% (2225/4034)

(1) >(1)lim[n→∞]{√(x+3)-√(x)/√(x+2)-√(x+1) lim[x→∞] {√(x+3)-√(x)}/{√(x+2)-√(x+1)} 分子分母に{√(x+3)+√(x)}{√(x+2)+√(x+1)}をかける。 =lim[x→∞] (3/1)*{√(x+2)+√(x+1)}/{√(x+3)+√(x)} =lim[x→∞] 3*{√(1+(2/x))+√(1+(1/x))}/{√(1+(3/x))+1} =3 (2) 公式Σ[k=1→n] k^2=1^2+2^2+…+n^2=(1/6)n(n+1)(2n+1) を使って下さい。 a_n=(1^2+2^2+…+n^2)/n^3=(1/6){1+(1/n)}{2+(1/n)}→1/6 (n→∞)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 極限値 問題

    極限値 問題 lim[x→0]{((√1+x+x^2)-1)/(√1+x)-(√1-x)}を求めよ。 なのですが、有理化等しても0/0となってしまいます・・・ どのように解けば良いでしょうか? ご回答よろしくお願い致します。

  • 極限値を求める問題

    東京都の私学教員適性検査を受ける者です。 平成21年度の数学の問題で解き方がわからない問題があったので、質問します。 ちなみに、解答、解説が全くないので、手詰まり状態です。 極限値 lim(x→0) √(1+x+x~2) -1 / √(1+x) - √(1-x) を求めよ。 注意 √の中身は( )の中です。 x~2とはxの2乗という意味です。 有理化を考えましたが、どうしても分母が0になってしまうので、何を掛けたなど、詳しく教えて頂きたいです。 よろしくお願いします。

  • 極限値の問題

    lim(x→1){(x^2+ax+b)/(x-1)}=3を満たす定数a,bを求めよ という問題なんですが lim(x→1)(x-1)=0であるから lim(x→1)(x^2+ax+b)=0 解答にはこのように始まっているのですが この命題の解釈を 「xは1になるのでそれだと分母が0になってしまい、0での除法は数学的にありえないので 分子も0になるしかない」 とこんな感じに僕なりにしてみたんですがあっているでしょうか? それと 微分の問題をある程度やっていて、それなりに解けるようになってきたんですが 未だに極限値というのが微妙な理解です、テキストを読んでも難しい言葉で書かれており、何がなにやらというのが本音です。 今僕が考えている極限値というのは、3次関数のグラフを書いた時に出来る山のような曲線というちょっとわけのわからない理解なんですが 極限値とはなんなのかという簡単な解説をよろしくお願いします。

その他の回答 (2)

  • 回答No.3
  • info22
  • ベストアンサー率55% (2225/4034)

#2です。 A#2の単純ミスの訂正です。 > a_n=(1^2+2^2+…+n^2)/n^3 > =(1/6){1+(1/n)}{2+(1/n)}→1/6 (n→∞)   =(1/6){1+(1/n)}{2+(1/n)}→2/6=1/3 (n→∞)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。 解けました!

  • 回答No.1
  • debut
  • ベストアンサー率56% (913/1604)

n→∞はx→∞ですか? 分子と分母の両方を有理化してみてください。 あっ、有理化は「分子分母に√(x+3)-√(x)をかけて」 じゃないですよ。√(x+3)+√(x)じゃないと。 >a_n=1^2+2^2+…+n^2/n^3 は、a_n=(1^2+2^2+…+n^2)/n^3 ということですか? それならば、Σk^2の公式で分子を違う形にしてみれば いいのでは?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。 Σk^2の公式を使ったら解けました!

関連するQ&A

  • 極限値を求める問題です。

    極限値を求める問題です。 画像のような計算の解き方がわかりません。 いうまでもなく極限値を求めろというものです。 分子か分母を有理化して答えを出すのかと試してみましたが どちらにせよ分母か分子が0となって答えが違い 計算が行き詰まってしまいます どのような解き方がありますでしょうか 一番簡単な解答をお願いします ちなみにこの極限値は有限な値(3)となり収束するそうです。

  • 極限値 問題

    極限値 問題 lim[x→0](sin^2x・cosx) /(1-cosx) 1+cosxを分子と分母に掛けて、分母が0を解消して lim[x→0]cosx+cos^2x=2 答えは合っていますでしょうか? ご回答よろしくお願い致します。

  • 極限値について

    極限値について教えてください。 1、f(x)=1/xの極限値は存在しますか? 2、lim ax^2+bx/x-3 =12 が成り立つとき、a、bの値を求めよ。   x→3  という問題において、どうして「x→3のとき、分母が0に近づくから  極限値が存在するには分子も0に近づかなければいけない」  のでしょうか?   

  • 微分の極限値の問題が解けません

    lim x→0 (x^4-2x+3)/(x^6-x^2-2) の極限値を求めよという単純な問題なのですが、分母分子の因数分解がどうしても出きません。よろしくお願いします。

  • 極限値を求める問題です。

    次の極限値を求めよ。 lim(x,y)→(1,1) (x-1)^3+(y-1)^3/(x-1)^2+(y-1)^2 (x-1)^3+(y-1)^3が分子で (x-1)^2+(y-1)^2が分母です。 よろしくお願いします。

  • 極限値を求める問題です。

    次の極限値を求めよ。 lim(x,y)→(1,1) (x-1)^3+(y-1)^3/(x-1)^2+(y-1)^2 (x-1)^3+(y-1)^3が分子で (x-1)^2+(y-1)^2が分母です。 よろしくお願いします。

  • 数3 数列の極限

    数列の極限を解いてみたのですが、 (1)の途中式は合ってますか? (1)lim n→∞ n/(n+1) lim n→∞ n/(n+1) ←分母と分子にn/1をかけ、 =1/(1+1/n) =1/(1+0) =1 あと、(2)はなぜこうなるのでしょうか? (2)lim n→∞ 3/n-√(n^2-n) を求めよ lim n→∞ 3/{n-√(n^2-n)} ←を有理化?し、 =lim n→∞ 3{n+√(n^2-n)}/n  ↑で分母と分子にn/1をかけると思うのですが、 分子は3と{n+√(n^2-n)}の部分、 どちらにもかけるのではなく、 {n+√(n^2-n)}だけにかけるのはなぜですか? 教えていただけると有難いです。 よろしくお願いします。

  • 極限値をお願いします

    極限値をお願いします lim[x→2] (2x^2-x-6)/(3x^2-2x-8) 有理化をするようなのですが、やり方がどうにも分かりません。 答えは7/10です 途中式もお願いします

  • 極限値の求め方について

    極限値を求める問題で、つまずいたところがあります。 lim x→-∞ (3x+2)/(x^2+1)^1/2 という問題なので、当初は分子と分母をxで割ることで lim x→-∞ (3+2/x)/(1+1/x^2)^1/2に変形し、答えを3と導出したのですが正答は-3とのことです。 x=-tとおき、lim t→∞ (-3t+2)/(t^2+1)^1/2とすれば-3が導出できることはわかったのですが 当初のやり方のどこに不具合があったかわかりません。 分母の(x^2+1)^1/2を、負の値であるxで割ろうとする事が問題なのでしょうか? 自分なりに理由を探索したのですが、いまいち確証が持てません。ご回答お願いします。

  • 極限値の求め方が分かりません

    極限値の求め方が分かりません 例 (1)-2/{√(1-2/x)-1} (x→∞) (2)(x^2+x-12)/(x-1) (x→3) (3)(x^2-9)/(x^2-5x+6) (x→3) (4)(x^2-7)/(x^2-5x+6) (x→3) (1)はx→∞のとき,2/x→0なので分母→0 よって(1)→∞ (2)はx→3のとき,分子→0,分母→2 よってx=3を代入して(2)→0 (3)はx→3のとき,分子→0,分母→0 そこで式を変形すると(x+3)(x-3)/(x-2)(x-3)=(x+3)/(x-2) ここでx=3を代入して6 ここで分からないことがあります. ・分母→0のとき 分子→0なら,式を変形し,分子が0に収束しないならそのままx=αを代入できるのですか? ・(4)((3)のように割れない)はどうなるのですか? ・こういう問題ではどういう決まりがあるのですか?(∞-∞や∞/∞に収束するような形はだめ.など)