• 締切済み

コーシーの積分定理

こんにちは。僕は今コーシーの積分定理を勉強しているものです。 コーシーの積分定理を使った問題で、どうしても解法がよくわからない問題があるのでお願いします。 ∫[C] z^3/(z-4)^2dz (C:|z|=2) という問題です。この問題に限らず、分母が2乗の形になっているような問題がわかりません。 他の問題だと、z^3/(z-4)/(z-4)のような形にして、f(ξ)=ξ^3/(ξ-4)として解けるのですが、もちろんこの問題だとf(ξ)の分母が0になってしまい、困ってしまいます。 こういった問題はどのような解法を用いればいいのでしょうか。 お手数ですが、おわかりになる方いらっしゃいましたら、ご教授いただけると幸いです。

みんなの回答

  • zk43
  • ベストアンサー率53% (253/470)
回答No.2

被積分関数z^3/(z-4)^2はz=4が特異点(2位の極)になっていますが、 |z|≦2の中にはなく、|z|≦2では正則なので、コーシーの定理から この積分は0になります。 C:|z-4|=2とかだったら意味のある問題だと思いますが、問題はあって ますか?

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

z^3/(z-4)^2 は { z : |z| ≦ 2 } で正則なので、特になにをする必要もなさそうですが。。。

関連するQ&A

  • コーシーの積分定理

    コーシーの積分定理を用いて 1/(2πi)∫[C] e^z/(z-2)dz (C:|z-2|=1) を計算しろという問題なのですが、考え方がよく分かりません。 どのように計算していけばいいのでしょうか?ご教授お願いします。

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。

  • ∂(1/z)/∂zをコーシーの積分定理を用いて計算

    ∂(1/z)/∂zをコーシーの積分定理を用いて計算せよという問題があったのですが、教えてもらえないでしょうか?

  • コーシーの積分公式について

    コーシーの積分公式を使って、f(z)=1/{(z-a)(z-b)}とした ∮f(z) dz を求める過程に違和感を感じるので、誤っているところの指摘をお願いいたします。 f(z)=1/{(z-a)(z-b)}として、 C_ab を極a, bを囲む閉曲線, C_aを極aのみを囲む閉曲線, C_b を極bのみを囲む閉曲線とします。これらの閉曲線の向きはいずれも反時計回りとします。 このとき、極a,bを避けるような周回積分によって(a)式が成り立つと思います。 ∮_C_ab f(z) dz - ∮_C_a f(z) dz - ∮_C_b f(z) dz = 0 …(a) g(z) = 1/(z-a)とすると、 ∮_C_b f(z) = ∮_C_b g(z)/(z-b) dz = 2πi g(b) = 2πi / (b-a) …(b) h(z) = 1/(z-b)とすると、 ∮_C_a f(z) = ∮_C_a h(z)/(z-a) dz = 2πi h(a) = 2πi / (a-b) …(c) よって、 ∮_C_ab f(z) dz - 2πi / (b-a) - 2πi / (a-b) = ∮_C_ab f(z) dz = 0 …(d) となってしまいます。(d)は f(z) の正則性からしてもありえないことだと感じるのですが、どの式変形の途中で誤ってしまったのでしょうか。

  • 複素関数(コーシーの積分定理)

    複素関数の問題について質問です。 以下の問題について解いてみたのですが問題集の答えと合わずに苦しんでおります。 (1) I1=∫Cdz[1/z^2(z-1)] C:|z|=2 (2) I2=∫Cdz[1/z^3-1] C:(x^2)/2 + (y^2)/3=1 (z=x+iy) 申し訳ありませんが間違えをご指摘いただけませんでしょうか? よろしくお願いしますm(_ _)m 解答は (1): 2πi (2): 2πi/3 となっています。 (1)部分分数に分解して I1=∫Cdz[-1/(z) -1/(z^2) + 1/(z-1)] ここでf(z)=1とおけばf'(z)=0よりコーシーの積分定理から I1=2πi[-f(0)-f'(0)+f(1)]=2πi[-1-0+1]=0 ■ (2)部分分数に分解して ω1=(-1+i√3)/2, ω2=(-1-i√3)/2 とおくと I2=∫Cdz[1/3{1/(z-1) +ω1/(z-ω1)+ω2/(1-ω2)] f(z)=1とおけば I2=2πi[f(1)+ω1*f(ω1)+ω2*f(ω2)] =2πi[1+ω1+ω2] =2πi[1-1] =0      ■

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 複素積分の初歩的な問題について質問です。

    Cを中心1,半径1の円とし、向きは正の向きとします。このとき、経路Cに沿った3つの積分 (1) ∫ z^3/(z-3) dz (2) ∫ z/e^z dz (3) ∫ 1/(e^z +1) dz を求めたいのですが、手元に答えがないうえに、合っているか自信がないので正しい解法と解答を教えていただけたら幸いです↓ (1) は ∫ (z+3)+9/(z-3) dz と変形できて、 (z+3) と 1/(z-3) はCとその内部で正則なのでコーシーの定理より0。 (2) は z/e^z がCとその内部で正則なので0。 (3) は 1/(e^z +1) がCとその内部で正則なので0。 自分で解いたらこんな感じになりました。う~ん・・・?

  • コーシーの積分公式を使っての初歩的な問題

    C:|z|=1,Cの向きは偏角の増大する向きとする。 ∫c (z+1)/z dz コーシーの積分公式を使うということまではわかるのですが、使い方がよくわかりません。 答えは2πiになるらしいのですが。

  • コーシーの積分定理に関する問題

    現在コーシーの積分定理に関する問題をやっています。教科書や参考書・ウエブサイトなどを見ているのですが、あまり理解できません。もしよければ教えていただけないでしょうか。現在やっている問題は画像のほうに載せます。

  • コーシーの積分定理の問題です

    次の積分の値を求めよ。 ∫(Γ)dz/z^2(z+1)(z-2) Γ: |z| = r (正の向き) ただし r≠1, r≠2 という問題です。 与式 = {∫(Γ)(z-2)/4z^2 -1/3(z+1) + 1/12(z-2)}dz この後がよくわかりません御回答よろしくお願いします。