• ベストアンサー
  • すぐに回答を!

微分方程式

微分方程式 dy/dx+ay=cosx を初期条件 x=0のとき、y=0 のもとで解け。ただし、aは正の定数とする。 という問題です。 1階線形微分方程式y'+P(x)y=Q(x)の解法で解けばいいのかなと思い、 解いていきました。 P(x)=aなので、 e^(∫P(x)dx)=e^(∫adx)=e^(ax) これを問題の両辺に掛けると、 e^(ax)y'+e^(ax)ay=e^(ax)cosx (e^(ax)y)'=e^(ax)cosx e^(ax)y=∫e^(ax)cosxdx となりました。 で、∫e^(ax)cosxdxの解き方がよく分かりません。 置換積分法と部分積分法を試したのですが、ダメでした。 そもそもこの解き方であっているのかもあまり自信がありません。 この問題の解き方、または∫e^(ax)cosxdxの解き方を教えて下さい。 ちなみに、指数の部分は()でくくられているところで、cosxやyは指数ではありません。 どなたかヨロシクお願いします。。。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数212
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • debut
  • ベストアンサー率56% (913/1604)

部分積分を2回繰り返せばいいと思います。 ∫e^(ax)cosxdx=e^(ax)sinx-a∫e^(ax)sinxdx =e^(ax)sinx-a{-e^(ax)cosx+a∫e^(ax)cosxdx} なので、移項して (1+a^2)∫e^(ax)cosxdx=e^(ax)(sinx+acosx) ∴∫e^(ax)cosxdx={e^(ax)/(a^2+1)}(sinx+acosx) となりました。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます!! おかげで解けました!! すみません、微分積分苦手なもので・・・

関連するQ&A

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 (1) 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) (2)0<x0<1のときt(t≧0)餓変化した場合のx(t)の最大値を求めよ。 (1)は与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) (1/2)*d/dx*(dx/dt)^2=-(1/x^2) 両辺xで積分すると (dx/dt)^2=2/x+2(1-1/X0)(初期条件より) (2) は dt/dxが0すなわち1/xが-(1-1/X0)のときかとおもったのですが よくわからないです。 どなたかおねがいします。。

  • 微分方程式2

    次の微分方程式の解き方を教えて下さい。 dn=α*n*dx 記号α(アルファー) 初期条件としてはx=0のときn=1である。

  • 微分方程式について

    この連立微分方程式の解き方がわかりません。どのようにして解けばいいのでしょうか。  x''=Ax/r^2+y'B  y''=Ay/r^2-x'B (A,Bは定数 x'',y''はそれぞれx,yの二階微分、x,yはそれぞれx,yの一階微分 r=(x^2+y^2)^1/2) どなたかよろしくお願いします。

  • 一階微分方程式

    この微分方程式の解き方がわかりません。どなたかわかる人がいらしたら、教えてください。 Mdv(t)/dt=-ζv(t)+a*sin(ωt) 初速度をv(0)とおくと、この線形微分方程式の解は、 v(t)=(v(0)+(aω/M)/(ω^2+(ζ/M)^2)exp(-ζt/M)+(a/M)sin(ωt-δ)/√(ω^2+(ζ/M)^2) 公式どおり計算てみましたが、部分積分のところが上手に出来ません。その部分積分は、 v(t)=exp(-ζt/M)[a/M∫exp(ζt/M)*sin(ωt)dt+v(0)] のインテグラルの部分です。

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 問題 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) 少し問題の書き方がおかしいかもしれませんが(微分の書き方)どなたかお願いします。 自分なりにといたのですが 与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) ∫(1/2)*d/dt*(dx/dt)^2=-∫dx/dt*(1/x^2) ????? と与えられたヒント通りにしてそこからどうしたらいいのかわからなくなってしまいました・・・

  • 微分方程式

    次の微分方程式の解き方がわかりません。 (1) y^(4) + 4y = 0 (2) 連立微分方程式 x ' = 3x - y  x(0)=3 y ' = x + y   y(0)=0 (3) y '' + y = cosx 出来るだけ詳しく答えて頂けると助かります。 よろしくお願いします。

  • 微分方程式

    もうすぐ数学のテストなのですが、交通の事情などで今まで授業にあまり出ることが出来なかったため微分方程式の解き方がよく分かりません。 微分方程式を初期条件のもとで求めるといったような問題で、簡単なものだとは思うのですが教科書にもあまり詳しく書かれていないため困っています。 微分方程式の解き方を教えていただけないでしょうか? もしくはそういったサイトなど無いでしょうか? よろしくお願いします。

  • 微分方程式を解く問題が分かりません。

    微分方程式を解く問題が分かりません。 次の微分方程式が解けません。 {(d^2)x}/{d(t^2)}+2ε(dx/dt)+(ω^2)x=0 ただしε<ωとする。また初期条件をt=0でx=0、dx/dtでv0とする。 が解けません。x=e^(αt)とおいて解いていくようなのですが・・・。 よろしくお願いします。

  • 微分方程式の問題

    dy/dx=2xy+x^3y^2 解:1/y=1/2(1-x^2)+Ce^(-x^2) の問題なのですが、 ベルヌーイの方程式のやり方で解いていった後、 du/dx=-2xu-x^3  [u=1/y du/dx=-1/y^2(dy/dx)] になり、線形微分方程式で解いていくと、 u=e^(-∫2xdx)(∫e^(∫2xdx)(-x^3)+c) となり、∫e^(∫2xdx)(-x^3)を部分積分の形で計算していくと、 解と異なる答えがでてきてしまいます。 どこが間違っているのでしょうか。

  • 微分方程式で、

    微分方程式で、 y''+3y'+2y=cosx の解き方教えてください。。。