• ベストアンサー

放物線の平行移動

僕は今年高校に入った新入生です。分からないことがあるのでここに書かせていただきます。 数研出版の数学1には下記のようなことが書かれています。 * XXはXの平方ということです。 「放物線y=2xxをFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gはy-4=2(x-3)(x-3)になる。 それは次のように考えても分かる。 G上に任意の点P(x,y)をとり上で述べた平行移動によって移されるF上の点をQ(X,Y)とすると x=X+3 y=Y+3 すなわちX=x-3 Y=y-4 点QはF上にあるからY=2XX この式のXにx-3をYにx-4を代入するとy-4=2(x-3)(x-3) これはGの方程式である。」 まず前提としてFとGの方程式やグラフは異なることは明確です。 しかしFの方程式 Y=2XX にX=x-3 Y=y-4を代入すると y-4=2(x-3)(x-3) つまりGの方程式になります。 このままではこの二つは同じ方程式ということで重なった放物線になってしまいます・・・。どこが間違っているのでしょうか。ご指摘をお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • kkkk2222
  • ベストアンサー率42% (187/437)
回答No.3

x^2 はxの平方ということです。 F:Y=2(X^2)       F上に任意の点P(X,Y) G:y-4=2【(x-3)^2】 G上に任意の点Q(x,y) X=x-3 Y=y-4 Fの方程式 Y=2(X^2) で、 Xをx-3、Yをx-4に置き換えると、 y-4=2(x-3)^2 これはGの方程式である。 ーーー >>このままではこの二つは同じ方程式ということで重なった放物線になってしまいます。 *幾つかの誤植を訂正しました。 *文字も敢えて教科書とは異なる書き方をしました。 本来は上記の表記が判り易いのですが、<ある理由により> 教科書は、この表記が禁止されています。 *言葉使いも敢えて表現を変えました。  解決策ですが理屈を捏ねるのは止めます。 実利的方法を書きます。 ○この記述を一度、貴殿の頭脳から消去してしまう。此れが最善と思います。  次に若干貴殿の頭脳の中を覗いてみます。 >>どこが間違っているのでしょうか とありますが本当は何か得体の知れない、 <奇妙な感覚>がある。  この<奇妙な感覚>は、かなりの人に起きます。 私も貴殿と同じ事を考えました。 未だに、この<感覚が起きます>  最後に、ひとつだけ、たとえ話を書いて終わります。 <お母さんを、平行移動した。> ・・・平行移動したって、お母さんはお母さんだ・・・ ・・・平行移動たら、もう元の、おかあさんではない・・・ 数学では、どちらが正しいか(理屈を捏ねてしまいました。)

exilonve
質問者

お礼

御回答ありがとうございます。もやもやが少し晴れたような気がします。

exilonve
質問者

補足

回答を拝見して自分なりに考えて、平行移動の原理をまとめてみましたが合っているでしょうか。 (xの平方を^2とする。) グラフF;y=x^2 をx軸方向にa、y軸方向にb平行移動し、それをグラフGとする時 座標(a,b)を頂点にするにはグラフFにとっての頂点(0,0)がグラフGにとっての(a,b)でなくてはならない。 ★★x=aのときaを0にするには(x-a)、y=bのときbを0にするには(y-b)★ つまりグラフGは y-b=(x-a)^2 ゆえに y=(x-a)^2+b つまり教科書に書かれているxにx-3を代入というのは★の行の働きをしているということでいいのでしょうか?

その他の回答 (3)

  • kkkk2222
  • ベストアンサー率42% (187/437)
回答No.4

#3です。 >>平行移動の原理・・・ 貴殿の考えかたでOKです。 #1 関数記号fはかなり理解しがたいようです。 ゆえに一般論は平行移動の学習が終了した段階で<補足><発展>として記載されます。 #2 多少難解になりますので<感覚>だけで読んでください。 <関数の概念>は XをBLACKBOXに入れてYを得る。 Y=2Xとすると、 5→BLACKBOX→10 6→BLACKBOX→12 #3 <関数>は<変換><操作><写像>とも言えます。 ゆえに<関数>は<グラフ>とは本来は無関係なのです。 Y=2Xは、y=2x、B=2A、□=2○としても<操作>としては同一です。最善の表記は□=2○なのですが・・・ #4 通常は、 ひとつの値→BLACKBOX→新しいひとつの値 なのですが、 <平行移動>では、 ふたつの値→BLACKBOX→新しいふたつの値 (X、Y)→BLACKBOX→(x、y) この結果として、 y=x^2→BLACKBOX→ y-b=(x-a)^2 この<ふたつの値>に関する記述に、最初に出会うのが<平行移動>となります。 #LAST <操作>をしたら、<その意味を考えない> <操作>は形式とし、 <操作>の結果のみを見る。 y=x^2→<操作>→ y-b=(x-a)^2 用語BLACKBOXが好まれる理由は、 BLACKBOX=黒い箱=謎=<その意味を考えない> BLACKBOXを<辞書検索>して見て下さい。 頑張って下さい!

回答No.2

たぶん教科書違います。次のように書き直してください。 「放物線y=2xxをFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gはy-4=2(x-3)(x-3)になる。 それは次のように考えても分かる。 F上に任意の点P(x,y)をとり、上で述べた平行移動によって移されるG上の点をQ(X,Y)とすると X=x+3 Y=y+3 すなわちx=X-3 y=Y-4 点pはF上にあるからy=2xx この式のxにX-2をyにY-4を代入するとY-4=2(X-3)(X-3) YをyにXをxにするとこれはGの方程式である。」

exilonve
質問者

お礼

ご回答ありがとうございます。少しずつ理解してきました。

  • yuu111
  • ベストアンサー率20% (234/1134)
回答No.1

こんばんは 少し勘違いがあるようです。 しかし、どのように説得すればいいのか・・・ 関数の文字というのは、「範囲中のすべての数」をあらわします。 今は変域はありませんから、すべての数を表します。 ですから、「X」も「x」もすべての数を表す同じものです。 ですから、最後のほうの「しかしFの方程式 Y=2XX」は「y=2xx」とあらわしても同じことです。 う~ん ごめんなさい、限界です^^;

exilonve
質問者

お礼

ご回答ありがとうございます。少しずつ理解してきました。

関連するQ&A

  • 放物線の平行移動についてちょっとした思い込みをしてるみたいです。

    放物線の平行移動についてちょっとした思い込みをしてるみたいです。 『放物線y=2x^2をFとする。Fをx軸方向に3、y軸方向に4だけ平行移動して得られる放物線をGとする。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点をQ(X,Y)とすると x=X+3、y=Y+4 すなわち X=x-3、Y=y-4 点QはF上にあるから Y=2X^2 この式のXにx-3、Yにy-4を代入すると y-4=2(x-3)^2 これはGの方程式である。』 と数Iの教科書に書いてあります。 ちょっと疑問があります。 Q(X,Y)のXはx-3、Yはy-4と表してあります。 つまりQ(x-3,y-4)です。 QはF上の点です。 しかしY=2X^2にQを代入したらGっていうのに疑問を感じます。 Gは y-4=2(X-3)^2です。 しかしGは点Qを通ってません。 つまり、QはF上の点だから、Fの方程式になるんじゃないか?と思い込みをしてしまいます。 なんでですかね? まあ、FはすべてのXとYについて成り立ちます。つまり、Fの放物線を表す式はXとYが含まれていて、xとyは含まれない。 Gはすべてのx、yについて成り立ちます。つまり、Gの放物線を表す式はxとyが含まれていて、XとYは含まれない。 故に、求められた式はxとyの関係式であるからGの方程式である。 という解釈は大丈夫ですかね?

  • 改めて、2次関数の平行移動。

    皆様宜しくお願い申し上げ致します。 2x2は、2xの2乗と理解して頂きたく思います。 昨日大変親切な方から解答を頂いたのですが、説明が数式ばかりで高校生の僕には結局理解出来ませんでした。 僕の数学的経験が浅いのが原因だと思います。 質問をさせて頂きます。 以下の文章は、数研の日本一難しい教科書の一節です。 放物線y=2x2をFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gの方程式が y=2(x-3)2+4 すなわちy-4=2(x-3)2 になることは、既に学んだ。 此処までは理解出来ております。 このことは、次のように考えてもわかる。 以下の文章が僕には理解出来ません。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点を Q(X,Y)とすると x=X+3, y=Y+4 すなわち X=x-3,Y=y-4 点QはF上にあるから Y=2X2 この式のXにx-3を、Yにy-4を代入すると y-4=2(x-3)2 此処までは理解出来ます。 僕の考えでは、 点Q(X,Y)はあくまでも放物線F上にあるから、 Y=2X2 此処で、 X=x-3,y=y-4を、グラフF上の点Q(X,Y)に代入するのだから、代入し終わった 点Qの座標は、(x-3,y-4) 改めて、点QはグラフF上にあるのだから、 グラフFの方程式、 y=2x2 に、グラフF上の点Q(x-3,y-4)を代入するのだから、 y-4=2(x-4)2は放物線Fの方程式 と考えてしまいます。 教科書の記述では、 これは放物線Gの方程式である。 と書いて有ります。 何処が僕の数学的論理が間違っているのでしょうか? 何方か、数式だけで無くて、日本語も含めて説明して頂けると有り難いです。 是非是非宜しくお願い申し上げ致します!

  • 2次関数の平行移動。

    教科書数学1の記述です。 放物線y=2x2をFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gの方程式が、 y=2(xー3)2+4 すなわち y-4=2(xー3)2 になることは、既に学んだ。 此れの記述の意味は分かります。 このことは、次のように考えてもわかる。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点を Q(X,Y)とすると x=X+3,y=Y+4 すなわちX=x-3,Y=yー4 点QはF上にあるから Y=2X2 この式のXにx-3を、Yにyー4を代入すると yー4=2(xー3)2 これは放物線Gの方程式である。 の、記述の意味がイマイチ何を言いたいのか良く分かりません。 多分、G上の任意の点P(x,y)の、任意、と言う言葉がヒントに成ってる様な気がします。 何か、キツネに騙された様な気がして、頭の中が、スッキリしません。 何方か、僕の頭の中をスッキリさせてくれる様な回答を宜しくお願い申し上げ致します!

  • 二次関数 平行移動証明

    二次関数F:y=x^2をx軸方向にp、y軸方向にq平行移動して得られる二次関数G上の任意の点を(x,y)とすると平行移動前は(x-p,y-q)で表されこれはF上の点であるから代入してy-q=(x-p)^2⇔y=(x-p)^2+q F上の点であるから代入して上式が得られるのはわかるのですが なぜこれがGの式を表わすのか分りません。 教えてください。お願い致します。

  • 二次関数の平行移動

    二次関数の平行移動 理解できないところがたくさんあります。 ほとんど教科書丸写しなのですが 二次関数 F…y=x^2 を x軸方向にp, y軸方向にq だけ平行移動して 得られる二次関数G上に任意の点P(x,y)をとり、 平行移動前のF上の点Qを(X,Y)とすると x=X+p , y=Y+q → X=x-p , Y=y-q よって 点Q(x-p,y-q)で表される。 これをFの式に代入して y-p=(x-p)^2  → y=(x-p)^2+q これはGの式である。 ----------------------------------- (1)なぜ元の二次関数Fの点ではなく 動いた後の二次関数Gの点を(x,y)と基準?としているのかがわかりません。 「そうすると説明が上手くいくから」でしょうか? 平行移動する前を基準として考えれば 平行移動後が(x+p,y+q)になるじゃん!と思ってしまいます…;; (2)F上の点Qの座標をFの式に代入した式なのに なぜGの式になるのかがわかりません。 あと…… 任意という言葉の意味がいまいちわかりません。 その言葉の効果はどこで現れますか?? いってることが全ておかしかったらすみません。 理解力がほとんどありません。 よろしくお願いします。

  • グラフの平行移動について

    y=mxを、x軸方向に2,y軸方向に3、平行移動したあとのグラフがy-3=m(x-2)になるのですか? この質問にこのような回答がありました。 移動後の方程式Y=f(X)の点を(a,b)とすると 移動前の方程式y=f(x)を満たす点が(a-2,b-3)となる。よってx,yに代入してb-3=m(a-2)が成り立つ。 従ってy-3=m(x-2) ここで質問なのですが、移動前の方程式に移動前の点を代入したらそれは移動前の方程式じゃないのですか?(a-2,b-3)は移動前の方程式の通る点だし、代入した方程式y=f(x)も移動前のものです。なのに移動後の方程式になるっていうのは納得できません。理解力がないのです。本当に困ってます助けてください

  • 放物線

    放物線 Y=X²-2X を、X軸方向へ-3、Y軸方向へ4だけ 平行に移動して得られる放物線の方程式は Y=(?)、 直線Y=3に関して対照移動して得られる放物線の方程式は Y=(??)である。 この(?)と(??)の答えは何ですか? どのように計算していけばいいですか? 考え方もわからないので、 どなたか、わかりやすく教えてもらえませんか?

  • 関数の平行移動について

    頭が混乱しているのでお願いします! 関数の平行移動について,です. 点(x,y) を x軸方向へp, y軸方向へq だけ平行移動した点は, (x+p, y+q) ・・・ (1)  となります. 一方,関数 y = f(x) を x軸方向へp, y軸方向へq だけ平行移動したら y-q = f(x-p) ・・・ (2) となります. なぜ同じように平行移動させているのに,(1)では符号がプラスになって,(2)では符号がマイナスになるのでしょうか? できれば,数式の変形による説明ではなくて,直感的(視覚的)な説明にしていただけると幸甚であります. それではよろしくお願いします♪♪♪

  • 【急ぎ】放物線の平行移動の問題

    y = (x - 10)^2 - 12 を x軸に平行に +5動かし、y軸に平行に-7動かす。 この平行移動後の放物線の方程式は?という問題なのですが、 y = (x - 15)^2 - 19 だと思ったのですが、友達と答えが違っていたため不安になり質問させていただきました。 こちらの答えであっているのでしょうか? また、頂点は(15,-19)でしょうか?

  • 2次関数の平行移動の証明

    どうしても納得できないので質問させていただきます。 2次関数y=ax^2をx軸方向にp、y軸方向にqだけ平行移動した放物線の方程式が y-q=a(x-p)^2 であらわされることを証明せよ。という問題なのですが、証明は 点(x,y)をx方向にp、y方向にqだけ平行移動した点を(X,Y)とおくと、 X=x+p Y=y+q が成り立ち、これを変形すると x=X-p y=Y-q となるので、この式をy=ax^2に代入すると Y-q=a(X-p)^2 ゆえに求めるものはy-q=a(x-p)^2 となっているんですが、最後の Y-q=a(X-p)^2・・・(*1) が y-q=a(x-p)^2・・・(*2) に変換される理由がよくわかりません。こちらの解釈では、 (*1)が表すのは平行移動前の放物線を(X,Y)を使って言い換えた式。 (*2)も同じように考えてy-q=Y、x-p=Xすなわちy=Y+q、x=X+q、なのでY=aX^2という式を平行移動したという式になるのではないか、 という感じです。わかりにくいかもしれませんが、自分でもよく説明できずにいます。 なんかすごい根本的なことを勘違いしてるような気がして不安です。どなたか説明していただきたいです。