• 締切済み
  • 困ってます

分布関数

標本の密度関数がf(x)=x^(-a)である。 但し 0<x<1 0<a<1 標本からm個無作為抽出して平均値をとる操作をn回繰り返したときの、nを大きくしたときの平均の分布はどのようになるか分かる方教えて下さい。  この場合標本の分散が有限でないので正規分布にはならない。EXCELで簡単な例をやってみると、条件からx>0で、+方向に長いすそのを持った山になるので対数正規分布ではないかとおもいますが、いかかがでしょうか。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • akiojp
  • ベストアンサー率0% (0/0)

#1さん申し訳ありません。 eibiからアクセスしてたんですが、無くなったようです。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

2か所ほど分からない所がありますので、まずそれを確認させて下さい。 (1) 密度関数は ∫f(x)dx=1 を満たさなければならないのでf(x)= (1-a) x^(-a) ではないのでしょうか。 (2) 確率変数のとる範囲が0<x<1と有界ならば標本の分散は有限になるはずと思いますが? m個の標本平均の分布に関しては、例えば積率母関数で求めることができると思います。 (http://oshiete1.goo.ne.jp/kotaeru.php3?q=1057646  参照)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 分布の検定

    正規分布に従う母集団(母平均μ,母分散σ^2) からn個の標本を取り出したとします。 その標本の分布は論理的に標本平均μ,標本分散σ^2/n に従った分布になると思います。 そこで、実際にn個抽出し、標本平均と標本分散を算出しました。 もちろん、論理的な数値と実際の数値は異なります。 けれど、この実際に出した数値が信頼できる(論理的な数値に近い)と いうにはどのような検定を行えばよいのでしょうか??

  • 正規分布からの標本

    正規分布からの標本 母平均・母分散・がわかっている正規母集団からある大きさnの標本を抽出したとき、どのようにして標本平均が存在する場の確立を求めるのでしょうか? 例えば、母平均μ=4、母分散σ^2=15の正規母集団から大きさn=10の標本を抽出したとき、標本平均Xが3と6の間にある確率は? という感じです。 また、この問題に付随して標準分散s^2がaを超える確率が0.05となるような定数aの値を求めよ。というときに、どのようにして定数aを求めるのでしょうか。

  • χ^2分布と標本の関係

    命題:正規分布N(μ,σ^2)に従う正規母集団から,大きさnの標本X_1,X_2,…,X_nを無作為抽出したとき, Z={(X_1-μ)^2+(X_2-μ)^2+…+(X_n-μ)^2}/σ^2 は自由度nのχ^2分布に従う. というのは理論的に数式から導かれたものなので,納得できました. ところが, 命題:正規分布N(μ,σ^2)に従う正規母集団から,大きさnの標本X_1,X_2,…,X_nを無作為抽出し, 標本平均X=(X_1+X_2+…+X_n)/n を作ると, Z={(X_1-X)^2+(X_2-X)^2+…+(X_n-X)^2}/σ^2 は自由度n-1のχ^2分布に従う. が成り立つ理由が分かりません.数式を用いて理論的に教えて下さい.

  • カイ自乗分布の問題について質問です

    カイ自乗分布の問題について質問です 私は高校生で、経済学に興味があるので統計学を自習しております。しかし参考書にわからない問題があり困っております 統計学に詳しい方、よろしくお願いします。 1 自由度100のカイ自乗分布においてχ^2の5%点を正規分布近似により求めなさい 2 平均10 分散5 の正規母集団から抽出した大きさ4の無作為標本に基づく標本分散s^2が8より大きくなる確率は0.05より大きいか 3 平均μ 分散30の正規母集団からの大きさ16の無作為標本に基づく標本分散をs^2とする P(a<s^2<b)=0.95となるような定数a b を求めよ ただしP(s^2はa以下)=0.025とする

  • Xバーの分布について

    ある標本(xi:i=1,・・・,n)の母集団が平均値μ、標準偏差αの正規分布である。この母集団からn個の標本を抽出してその平均Xバーを求めたとき、この分布はどのような分布となるか説明せよ。という問題ですがわかる方いますか?

  • 確率分布関数に関する問題

    0<x<2mの範囲の値をとり得る確率変数xの確率分布関数が、次の形で与えられている:     f(x)=-A((x^2)-2mx) 以下の各問いに答えよ。ただし、A,mは正の定数である。 (1)確率分布関数を規格化あるいは正規化(normalize)することによって、Aを定めよ。 (2)xの期待値(母集団平均)がmになることを証明せよ。 (3)(x-m)^2の期待値(母分散)を求めよ。 (4)x_1,x_2,・・・,x_nを確率変数xのn個の標本とする。標本平均x*を     x*=1/nΣ(i-1→n)x_i   で定義する。x*の期待値もまた、mとなることを証明せよ。 という問題です。x_1はxに下付きで1が付いているということ、Σ(i-1→n)はΣの下がi-1で上がnということです。 (1)から分かりませんでした。 確率分布関数という言葉もそれほど聞きなれていない上、それを規格化あるいは 正規化する方法というのもよく分かりません。 (1)が解けないと残りの問題も解けない気がして…。 問題数が大変多く、申し訳ありませんが、どなたか、ご教授のほど、よろしくお願いします。

  • 不偏分散の分布は?

    不偏分散の分布について混乱していますので、ご助言頂けましたら幸甚です。 例えば母集団の分布を正規分布N(μ,σ^2)とした際、 標本平均x(=1/nΣxi)を区間推定する場合、正規分布の再帰性より、標本平均の分布はN(μ,(σ/√n)^2)となることから、μの区間推定が可能と理解しています。 また、若干やり様は異なりますが、標本分散s^2=1/nΣ(x-xi)^2に対し、ns^2/σ^2がΧ2分布に従うことから、σの導出が可能と理解しています。 ここで、上記と同様に、不偏分散(=1/n-1Σ(x-xi)^2)についての分布とは、どのような分布になるのでしょうか? おそらくΧ2分布になると推察しますが、証明できてません。 また、不偏分散の導出方法は、 E[S^2]、即ちS^2の平均と理解していますが、 S^2を確率変数とした際の分布がΧ2分布なのであれば、 このΧ2分布の平均が、不偏分散になってもよさそうですが、 Χ2分布の平均=n ですので、不偏分散とは不一致です。 上記のとおり、整理がついておりませんので、教えて頂けましたら助かります。 特に上記のとおり混乱しておりますので、現在はむしろ、「不偏分散については、点推定でのみ用いるのか?」と考えております。

  • 最尤推定

    ビタビを用いた最尤推定では、 n個の標本が、平均μ ,分散σ^2 の正規分布に 従う場合を想定しています。 しかし、n個の標本は有限の観測ですので、 たまたま出現値が偏っている場合があるように 思います。 要するに、n個の標本の平均がμ でなかったり, 分散がσ^2でない場合です。 聞きたいのは、ビタビを用いた最尤推定は n個の標本に着目した時、最適ではないと考えて良いのでしょうか?

  • 確率論の問題について

    (1)「確率変数Xが()(0,a)上の一様分布U(0,a)に従うとき、また()正規分布N(m,v)に従うとき、その標本化Zの分布密度関数を求めよ」 (2)「Xを標準正規分布N(0,1)に従う確率変数であるとする。Y=|X|の密度関数を求めよ。Yの平均と分散を求めよ」 というものなのですが(1)(2)ともにまったく手をつけることができません(泣)アドバイスなどお願いします(泣)

  • 統計学の問題

    早速ですが問題を書かせてもらいます. 身長の分布は正規分布N(170.5 , 36)に従うと仮定する. (1)N(170.5 , 36)からの大きさ10の無作為標本の標本平均の分布は何か. (2)前問における身長の平均をx0とおく.(1)の標本平均がx0より大きくなる確率を求めよ. 質問内容は2つあります.まず、(1)の「N(170.5 , 36)からの大きさ10の無作為標本」とはどういう意味なのでしょうか.また(2)の「前問における身長の平均」とは170.5のことなのでしょうか. よろしくお願いします.