• ベストアンサー
  • すぐに回答を!

中学数学の図形の問い

[1]線分ABを直径とする円Oがある。円の接線をATとする   円の周上にAC//ODなる2点C,Dをとる。   ABとCDの交点をEとする。   AB=4cm ∠DAT=36°のとき、   ∠ADCの大きさと線分OEの長さを求めなさい。 [2]点Oを中心とした円がある   A,B,C,Dは円Oの周上の点で⌒AC=⌒BD   また、弦ACと弦BDの交点をEとし、中心Oから、弦AC,弦BDに   それぞれ垂線OH,OKをひく   ∠HEK=130°のとき、∠OHKの大きさを求めなさい。 [3]全ての辺の長さが等しい正四角錘ABCDEがある。   各側面の三角形の重心をそれぞれP,Q,R,Sとし、   底面BCDEの対角線の交点をTとする。  (1)四角錘TPQRSの体積は、正四角錘ABCDEの体積に何倍になるか?  (2)AB=6cmのとき、点Pから正四角錘の表面にそって、     点Dまで行くときの最短の長さを求めなさい。 [4]ある点Aから円Oに接線を二本引き、接点をそれぞれB,Cとする。   円Oの円周上に点Dをとる。   点Dを通り、線分BCに平行な直線と接線AB,ACの交点を   それぞれE,Fとする。(AB<AE,AC<AF)   BC=3cm CD=4cm DB=2cmとする。  (1)FDとDEの長さの比を求めなさい  (2)ADとBCの交点をGとするとき、CGの長さを求めなさい いっぱいありますが、どうぞよろしくお願いします

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数246
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

[1]の解答 ∠DAT=∠ACD=∠ODC=36° ∠AOD=2∠ACD=72° △AODは二等辺三角形だから ∠ADO=(180°―72°)/2=54° ∠ADC=54°―36°=18° △ODEで∠EODの二等分線とEDとの交点をF とすると,△ODE∽△OEF OD:OE=OE:EF  OE=Xとおくと 2:X=X:2―X X^2+2X―4=0 X=√5―1 以上です

共感・感謝の気持ちを伝えよう!

質問者からのお礼

おそくなりましたが、どうもありがとうございました。 大変試験の役にたちました。 また、教えてください。

関連するQ&A

  • 数学を教えてください。

    円O上の点Aにおける接線l(エル)とする。また、点Aと異なるl(エル)上の点Bから円Oと2点で交わるような直線を引き、その交点をBに近い方からそれぞれC,Dとすると、AB=6、BC=4、AC=3である。 (1)線分BDの長さを求めてください。 (2)ΔABCの外接円上の点Aにおける接線と円Oとの交点のうちAと異なる方をEとする。このとき、ΔEACとΔABCが相似であることを証明してください。また、線分CEの長さを求めてください。 (3) (2)において、直線ACと直線BEの交点をFとする。このとき、ΔBCFとΔCEFの面積比を最も簡単な整数の比で表してください。 解いてみると、 (1)方べきの定理より、DC=xととくと AB(二乗)=BC×BD 6(二乗)=4×(4+x) 36=16+4x 4x=20  x=5 DC+CBより BD=9まではなんとか解けたのですがここから解けないので途中式も含めて教えてもらえませんか?

  • 高校入試・平面図形の問題【2】

    次の問題が分かりません。分かりやすく教えてください。 /////////////////////////////////////////////////////// 【1】下の図で、3点A、B、Cは円Oの周上にあり、△ABCはAB=ACの二等辺三角形である。弧AC上に点Dをとり、線分BD上に、BE=CDとなるように点Eをとる。このとき次の問いに答えなさい。 [問1] AB=5cm, AE=BC=4cmのとき EDの長さを求めよ。 [問2] 2つの線分AC、BDの交点をFとする。[問1]のとき、△BCFと△DCFの面積の比を求めよ。 /////////////////////////////////////////////////////// よろしくお願いします。

  • 数学「図形の性質」

    ∠A=30°、∠B=90°、BC=1である直角三角形ABCがある。辺AB上に∠CDB=45°となるように点Dをとる。また直線ABと点Aで接し、点Cを通る円と直線CDの交点をEとする。 (1)線分ADの長さを求めよ。また、∠DAEを求めよ。 (2)線分AEの長さを求めよ。 (3)弦ACに関して、点Eと反対側の弧上に点Pをとる。△ACPの面積の最大値を求めよ。 求め方がわかりません。 三平方の定理を使ってADを求めたのですが、間違っているような気がします。 解説よろしくお願いします。

その他の回答 (3)

  • 回答No.4

[4]の流れ △ABCと△AEFは相似な二等辺三角形 またBCとEFが平行なのと接弦定理で △BCD∽△CDF∽△BED 対応する辺の比でFD:DE=1:4 CG=12/5

共感・感謝の気持ちを伝えよう!

  • 回答No.3

[3]の流れ (1)重心の高さはもとの三角錐の1/3倍 正方形PQRSの一辺の長さは正方形BCDEの 一辺の長さの(1/2)*√2*(2/3)=√2/3 よって底面積は4/9倍 体積は底面積と高さに比例するので (1/3)*(4/9)=4/27倍 (2)△ABCと△ACDを折って同一平面上にすると 線分PDが最短 △APDは∠ADP=30°の直角三角形 PD=AD*(2/√3)=4√3

共感・感謝の気持ちを伝えよう!

  • 回答No.2

[2]の解答 ⌒AC=⌒BD より⌒AB=⌒CDでAB=CD よって△ABE≡△CDEでAE=DE よって△AOE≡△DOE(三辺が等しい) ∠OEH=∠OEKより△OEH≡△OEK また四角形OHEKは円に内接するので ∠HOK=180°―130°=50° ∠EHK=∠EOK=25° ∠OHK=90°―25°=65° 直線OEにかんしてB,H,AとC,K,Dが対称であること を使えばもっと簡単に出来ます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学(平面図形) 解説お願いします。

    長さ2Rの線分BCを直径とする半円周上の1点をAとし, 弦AB, ACの中点をそれぞれE, Fとします。 点Eで弦ABに接し、かつ弧ABに接する円の半径をαとし、 点Fで弦ACに接し、かつ弧ACに接する円の半径をβとします。 △ABCの内接円の半径を r として、次の等式を証明しなさい。 (1) 2(α+β)=R-r (2) 8αβ=r^2

  • 図形と計量

    度々訂正を被ったことを深くお詫び申し上げます。 [質問] △ABCにおいて、AB=4,AC=3,∠BAC=60°とする。また、三角形ABCの外接円をKとする。このとき、 BC=√13であり、△ABCの面積をS,外接円Kの半径をRとすると、 S=3√3, R=√39/3である。 (1)点Bにおける円Kの接線と点Cにおける円Kの接線を交点をDとし、直線ADと辺BCの交点をEとする。また、接線BD上に点Bに対して点Dと反対側に点Fをとる。 (図参照) (i)円Kの中心をOとすると、∠BOC=120°だから∠BDC=60°となり、BD=CD=√13である。 (ii)∠ABF=∠BCAだから, sin∠ABD=6/√39となる。 したがって△ABDの面積とT1とすると、 T1=4√3 となる。 同様にして,△ACDの面積をT2とすると, T2=9√3/4となる。 以上より, BE:EC=16:9を得る。 とありますが、∠ABDと△ACDの面積が求めれなくて困ってます。 接弦定理を使うのはわかってますが、答えが出ませんでした。 解説お願いします。

  • 高校入試・平面図形の問題

    次の問題がよくわかりません。詳しく、分かりやすく教えてください。 //////////////////////////////////////////////////////////// 【1】下の図で、△ABCの3つの辺に接する円の中心をOとし、点Oを通り辺BCに平行な直線と辺AB、辺ACとの交点をそれぞれD、Eとする。このとき、次の問いに答えなさい。 (1)AB=4cm, BC=5cm, AC=3cm, ∠BAC=90°のときの、点Oの半径を求めなさい。 (2)AB=5cm, BC=6cm, AC=4cm のとき、線分DOの長さと線分EOの長さの差を求めなさい。 //////////////////////////////////////////////////////////// よろしくお願いします。

  • 図形の問題

    AB=2、BC=√6、CA=3の三角形と円Oがある。 円Oは点Aを通り点Bで直線BCに接している。また、円Oは辺ACに対してA以外の交点Dを持つ さらに、∠Aの二等分線と辺BCの交点をEとする。 (1)三角形ABC∽三角形BDCを証明せよ (2)線分CDの長さを求めよ。またBE:ECを最も簡単な整数比で求めよ (3)線分AE,BDの交点をFとするとき、AF/FEを求めよ。また、三角形ABF、四角形CDFEの面積をそれぞれS,TとするときT/Sを求めよ さっぱりわかりません。どなたか回答よろしくお願いします。

  • 中学三年数学です

    教えてくださいお願いします 長さが10の線分ABを直径とする半円周上に、線分ACの長さが6となるような点Cをとる。CからABへひいた垂線とABとの交点をDとし、Cにおける円の接線と、BAの延長線との交点をEとする。 (1)CDの長さを求めよ。 (2)∠ABC=a°とするとき、∠CEBをaの式であらわせ。 (3)AEの長さを求めよ。

  • 図形

    4点A、B、C、Dは円Oの周上にある。ACは円Oの直径であり、⌒BD=⌒DCである。点Bを通りADに平行な直線とCAの延長との交点をEとする。 (1)AC=10cm、AB=6cm、BC=8cmのとき、△AEBの面積を求めなさい。 答えは72/5 求め方を教えてください(>人<;)

  • 平面図形の問題

    図のように、∠A=30°、∠B=90°、BC=1である直角三角形ABCがある。辺AB上に∠CDB=45°となるように点Dをとる。また直線ABと点Aで接し、点Cを通る円と直線CDの交点をEとする。 (1)線分ADの長さを求めよ。また、∠DAEを求めよ。 (2)線分AEの長さを求めよ。 (3)弦ACに関して、点Eと反対側の弧上に点Pをとる。    △ACPの面積の最大値を求めよ。 と言う問題があるのですが、(1)の1つ目の問題しか解けませんでした。分かったものだけでもいいので、お待ちしております。

  • 図形と計量について

    前回投稿させていただいたのですが、タイトルを間違えてました。 △ABCにおいて、AB=4,AC=3,∠BAC=60°とする。また、三角形ABCの外接円をKとする。このとき、 BC=√13であり、△ABCの面積をS,外接円Kの半径をRとすると、 S=3√3, R=√39/3である。 (1)点Bにおける円Kの接線と点Cにおける円Kの接線を交点をDとし、直線ADと辺BCの交点をEとする。また、接線BD上に点Bに対して点Dと反対側に点Fをとる。 (図参照) (i)円Kの中心をOとすると、∠BOC=120°だから∠BDC=60°となり、BD=CD=√13である。 (ii)∠ABF=∠BCAだから, sin∠ABD=6/√39となる。 したがって△ABDの面積とT1とすると、 T1=4√3 となる。 同様にして,△ACDの面積をT2とすると, T2=9√3/4となる。 以上より, BE:EC=16:9を得る。

  • 数学 相似の問題

    学校のプリントの問題です。 下の図のように、円周上の3点A、B、Cを頂点とし、AB=AC=6cm、BC=4cmである △ABCがある。 ∠Bの二等分線と、辺AC、弧ACとの交点をそれぞれD、Eとし、点Cと 点Eを線分で結ぶ。 また、辺BCの延長と弦AEの延長との交点をFとする。 (4)  AE:AFを最も簡単な整数の比で答えなさい。 解き方を教えてください!

  • 中2 数学 図形

    今日のテストでこのような問題がでました。 AB=10cm、BC=10cm、AC=12cmの△ABCがあります。 この三角形の∠Bの二等分線と∠Cの二等分線との交点を点Pとします。 また、点Pを通り辺BCと平行な線をひき、 辺ABとの交点をD、辺ACとの交点を点Eとします。 (1)△ADEの周の長さを求めなさい。 という問題です。 答えも解き方も全く分かりません。 回答お待ちしています。

専門家に質問してみよう