• ベストアンサー

三次関数f(x)を求めてください

Umadaの回答

  • ベストアンサー
  • Umada
  • ベストアンサー率83% (1169/1405)
回答No.1

最初の式 lim(x→1){f(x)/(x-1)}=8  (1) から、f(1)=0が結論されます。もしf(1)が0でないならば、上記の式の極限は発散してしまうからです。 これから直ちにf(x)は(x-1)を因数に持つことが分かります。 同様に次の式 lim(x→-1){f(x)/(x^2-1)}=2  (2) より、f(-1)=0が導かれます。同様にf(x)は(x+1)も因数に持つことも言えます。 問題が与えている条件からf(x)はxの3次式ですから、これまでに判明した二つの因数を使って f(x)=(x+1)(x-1)(ax+b)  (3) と置くことができます。a, bは未知の定数です。 (3)を改めて(1)に代入すると (1+1)(a+b)=8 であることが分かります。 また(3)を(2)に代入すると -a+b=2 であることも分かります。この先は簡単な連立方程式の問題に過ぎず、たやすくa=1, b=3と求められます。 (計算ちがいをしているかも知れません、念のため各式をチェックしながら読んでください)

関連するQ&A

  • lim[x→∞]f(x)/x=0の証明です。

    <問題> f(x)は連続関数で, lim[x→∞]{f(x+1)-f(x)}=0 ならば,  lim[x→∞]f(x)/x=0 を証明せよ。 苦手な関数の極限で、なす術がありません。どうか解答をお願いします。

  • 関数f(f(x))について

    関数f(x)(0≦x≦4)を下のように定義する時、次の関数の式をかけ。   f(x)=2x(0≦x<2)      8-2x(2≦x≦4) (1)y=f(f(x)) です。 xにf(x)を代入することは分かるんですが、どうも理解が出来ません。類題をやるとすぐミスってしまいます。コツなんかを知っている人是非教えて下さい。よろしくお願いします。

  • 関数f(x)について

    どんな1次関数f(x)についても 不等式{∫¹₀ f(x)dx}²<∫¹₀ {f(x)}²dxが成り立つことを証明しろ です。解説をお願いします

  • xの関数f(x)に対して、式

    xの関数f(x)に対して、式 f(x)=-f(-x) および式 f(2x)=(a×4^x+a-4)/(4^x+1) が成り立つ。ただし、aは実数の定数である。 このときのaの値と、 f(x)の逆関数についてf^-1(3/5)の値の求め方を教えてください。 回答よろしくお願いします。

  • 関数f(x)=[sinx]のグラフ

    お世話になっております。ただいまパソコンの調子が良くないため、質問させていただきます。 タイトルの通りの関数のグラフですが、大変汚くて申し訳ありませんが、添付したもので良いでしょうか? 因みに問題としては、f(x)=[sinx]のx=π/2 での連続・不連続を調べるものですが、私のやり方としては、xの多項式のガウス記号を含む関数と同じようにして(多分)、 -1≦sinx≦1より 0≦x<(π/2)⇒f(x)=0 x=π/2 ⇒f(x)=1 (π/2)<x<π⇒f(x)=0 として添付したようなグラフにしました。仮にこれで良ければ、lim[x→(π/2)±0]f(x)=0ですが、f(π/2)=1 ですから、 lim[x→(π/2)]f(x)≠f(π/2) となって、x=π/2 では、f(x)は不連続と言えそうなのですが、如何なものでありましょうか。アドバイス宜しくお願い致します。

  • 関数f(x)の作り方

    次の条件を満たす関数を用意したいのですが、できません。 3次関数y=f(x)において 1.3次の係数は1 2.k(定数)=f(1)>0 3.f(-1)=-k 4.f(x)は区間-1<x<1において極大値kをとる 5.f(x)は区間-1<x<1において極小値-kをとる x1をf(x1)=k -1<x1<1 x2をf(x2)=-k -1<x2<1として f(x)-k=(x-x1)^2(x-1) f(x)+k=(x-x2)^2(x+1) とすれば個々の性質は満たすのですが、この2式の連立からなどして、1~5の性質をすべて満たす1つの関数が作れません。作り方を教えてください。

  • f(x)=f1(x)におけるf(x)は何関数?

    例えば、xを変数にもつ以下の3つの関数、f(x)=f1(x)、f(x)=f2(x)、f(x)=g1(x)がある場合、この左辺のf(x)は何関数と呼ぶのでしょうか? 左辺の部分は、「xを変数にもつ関数」ということで、より広い一般的な関数を表し、 右辺は、「その実際の中身を表す関数」だと思うですが、 左辺のf(x)のような関数を何関数と呼ぶのでしょうか? (基本関数とか広義関数とかでしょうか(すみませんかなり適当にあてずっぽうに書いています。)) どなたか正しい呼び方を教えてください。 よろしくお願いします。

  • 関数f(x)がC∞-級関数であることの証明

    (1)f(x)が連続関数で、x≠0で微分可能かつ lim[x→+0]f'(x)=lim[x→-0]f'(x)=A (Aは実数) ならば、f(x)はx=0でも微分可能でf'(0)=Aとなることを示せ。 (2) f(x)=0 (x≦0のとき) f(x)=e^(-1/x) (x>0のとき) とするとき、f(x)はC∞-級関数であることを示せ。 *************** という問題で、(1)についてはロピタルの定理から簡単に示せるので、分からない点はありません。 (2)なんですが、x>0のとき任意のn=1,2,3,・・・に対し、{f(x)}^(n)は Σ[k=0→2n]{{a【k】}*e^(-1/x)}/x^kの形に表せます。 ∀rについてCr-級をrに関する帰納法で示したいです。 r=1のときf'(x)={e^(-1/x)}/x^2 だから1回微分可能。また、lim[x→0]f'(x)=0=f'(0)よりf'(x)は連続。 よってr=1のときにCr-級であることが証明されました。 この後、どうやっていいかわからないので教えてください。

  • 関数f(x)の連続性について

    よろしくお願いします. たとえば, 関数f(x)が与えられたとします. その関数は,X=a点の,ある近傍において 連続微分可能(単純のためここでは1回微分可能)とします. よって, その近傍においては,元の関数f(x)の点でも連 df(X)/dxに関しても連続ですよね.ここまでは OKですか? 次に, この場合,この条件から, X=a点で,f(a)も連続であると言えるのですか? ちなみにa点では,連続微分可能ということは言っていません. しかし, 関数f(x)がaの近傍で定義されていて, lim{f(x)}=f(a) x→a ならば,f(x)は,x=aで連続である と通常の解析本での連続の定義はされているので, これを表記せねば,連続であるとは言えないのでしょうか? それとも,表記せずとも,導出されてしまうのでしょうか? イプシロンデルタの表記法はなじみがないので, できれば,使うのであれば初心者にも分かりやすいように,どうぞお願いいたします.

  • f(x)=x^3はx=0で連続か不連続か

    『lim[x→a]f(x)=f(a)⇔f(x)がx=aで連続』 の⇒向きの話について疑問を感じます。 たとえば、 『f(x)=x^3はx=0で連続か不連続か。』 という問題で、解答は、 『lim[x→0]f(x)=0、f(0)=0より、 lim[x→0]f(x)=f(0)であるからf(x)はx=0で連続である。』 とかって書いてあるんですが、lim[x→0]f(x)=0っていうのはf(x)にx=0を代入して出しているのではないのでしょうか? (建前上は、)y=x^3のグラフから極限値を調べた、ということなんでしょうか? まぁ、この問題は本当に基礎の問題だからこのように書いてあるわけで、実際の問題では、多項式などは連続関数なのが自明だから、そこからはlim[x→a]f(x)=f(a)を使って求める、ということなのかな?と思ったんですが、どうなのでしょうか?