- ベストアンサー
- すぐに回答を!
微分方程式
練習問題を解いてみたのですが、あっているかどうかわからないので見てもらえないでしょうか? 個人的には出てきた答えが胡散臭い気がするのですが… 微分方程式 1+xp^2-tp^3=0,(p=dx/dt)を解け。 両辺tで微分して整理しますと (3xp-3tp^2)(dp/dt)=0…(1) また 1+xp^2-tp^3=0 より、p=0だから xp=tp^2-(1/p)…(2) (1),(2)からxを消去して (tp^3+2)(dp/dt)=0 が得られます。 ⅰ)tp^3+2=0のとき p^3=-2/t より p=(-2)^(1/3)*t^(-1/3) 問題で与えられた微分方程式に代入して整理すると (-2)^(2/3)*xt^(-2/3)+3=0 これは特異解でしょうか? ⅱ)dp/dt=0 のとき p=c, cは定数。 問題で与えられた方程式に代入して 1+(c^2)x-(c^3)t=0 これは一般解でしょうか? さて、答えが胡散臭いと思った理由ですが、一般解をパラメーターで微分した式と一般解の式からパラメーターcを消去すると特異解が得られるはずですが、わたしが計算した限りそうなってくれないからです。 どなたかご教授お願いします。
- guowu-x
- お礼率48% (120/250)
- 回答数2
- 閲覧数147
- ありがとう数1
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.2
- minardi
- ベストアンサー率82% (14/17)
(2x-3tp)p(dp/dt)=0から i) 2x-3tp=0のとき dx/dt-(2/(3t))x=0 x=at^(2/3)(ここでaは定数)となる p=dx/dtより、p=(2/3)at^(-1/3) このとき、xを与式 1+xp^2-tp^3=0に代入すると 1+at^(2/3)(4/9)a^2t^(-2/3)-t(8/27)a^3t^(-1)=0 1+(4/9)a^3-(8/27)a^3=0 1+(4/27)a^3=0 x=-(27/4)^(1/3)t^(2/3)が特異解 ii) dp/dt=0のとき p=c(ここでcは定数) またp=dx/dtより x=ct+d(ここでdは定数)となる このとき、xを与式 1+xp^2-tp^3=0に代入すると 1+(ct+d)c^2-tc^3=0 1+dc^2=0 となるので、x=ct-1/c^2(ここでcは定数)が一般解 iii) p=0のとき (p=dx/dtよりx=c (ここでcは定数)となる) このとき、xは与式 1+xp^2-tp^3=0をみたさないようです。 以上より> 一般解 x=ct-1/c^2 とそれををパラメーターで微分した式 0=t+2c^(-3) からパラメータcを消去すると 特異解x=-(27/4)^(1/3)t^(2/3)がでるようです。
関連するQ&A
- 微分方程式に関する問題です。
(x^2){(d^2)y/d(x^2)} - x(dy/dx) + y = x^3 (*) ********************************************************* (1)y = xφ(x)が微分方程式(*)の解であるとき、φのみたす微分方程式を求めよ。 ********************************************************* y = xφ(x)からy' , y''を計算して代入し、 φ''(x) = x/2 となりました。(答えの書き方はこれでいいのか分かりません。) ********************************************************* (2)φ'(x)を求めよ。 ********************************************************* (1)の答えの両辺を積分して φ'(x) = (x^2)/4 + C となりました。 ********************************************************* (3)微分方程式(*)の一般解を求めよ。 ********************************************************* (3)のとき方が分かりません。 どのようにして解いていけばいいのでしょうか? よろしくお願いします。
- 締切済み
- 数学・算数
- 微分方程式
微分方程式y''-(y')^2/y +y=0の解で初期条件y(0)=1,y'(0)=0を満たすものを y=y(x)とする。以下の問に答えなさい (1)z=logyとおくとき、z=z(x)の満たす微分方程式を求めなさい。 y=e^zとおいて、y''-(y')^2/y +y=0に代入するだけでいいと思います。 (2)yをもとめなさい。 y'=p y''=p・dp/dyとおきます。 dp/dy=p/y-y/p =(p^2-y^2)/gy 同時形を用いて u=p/yとおいて、p'=u'y+u 変数微分法を用いて u'y=-1/u ∫udu=-∫dy 1/2u^2=-logy+C となってさらに続くのですがここからよくわかりません。 そして、この手法はあっているでしょうか?? よろしくお願いしますm(__)m
- ベストアンサー
- 数学・算数
その他の回答 (1)
- 回答No.1
- minardi
- ベストアンサー率82% (14/17)
1+xp^2-tp^3=0,(p=dx/dt) 両辺tで微分して整理すると p^3+x(2p)(dp/dt)-p^3-t{3p^2}(dp/dt)=0 (2x-3tp)p(dp/dt)=0 になるのではないでしょうか。
質問者からの補足
ご指摘ありがとうございます。 すみません。タイプミスです。確かに (2x-3tp)p(dp/dt)=0 になります。 それ以下の記述は正しい式を使ってあるはずなので、大丈夫だと思いますが…
関連するQ&A
- 微分方程式の問題(4問)がわからないので教えていた
微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】
- 締切済み
- 数学・算数
- 微分方程式
問題を解いていて少し疑問に思ったので質問させてください。 u=u(t)を未知関数として A(du/dt) + B*u = E*sin(ωt) について、一般解を求め、その後初期条件u(0)=u0のもとで解け。 ただし、A,B,E,ωは正定数とする。 上記のような問題なんですけど、これは一階微分方程式ですよね? 一般解は、二階微分方程式では特性方程式によって求めた基本解と、未定係数法で求めた特殊解を重ね合わせて作るという印象があります。 このような一階微分方程式の場合はどのように解けばいいですか? 二階の時と同じように解いてよいならば、特性方程式の解から基本解を作る時など、二階微分方程式の時と同じようにやってよいものか疑問です。 特殊解も未定係数法もつかってよいのでしょうか。 詳しい方いましたら教えてください。
- ベストアンサー
- 数学・算数
- 微分方程式について
微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします
- ベストアンサー
- 数学・算数
- 微分方程式の解法。
現在、私は微分方程式が解けなくて困っています。 その微分方程式は次のようになります。 (d^2/dr^2)T+(1/r)(d/dr)T=(1/K)(d/dt)T をラプラス変換した、 T''+(1/r)*T'-(s/K)*T=0 です。 式のsはラプラス演算子で、Kは定数です。 この式の解法を調べたところ、上のような微分方程式はベッセルの変形微分方程式というものであることがわかり、一般解を導出し、計算したのですが、ラプラス逆変換が困難で挫折しました。 なにか他の解法はありませんか? 今、考えているのが解を次のように仮定し、 T=A*exp(-rs)+B*exp(-rs) 上の式に代入し、境界条件によってAとBを決定する方法です。 この方法はまずいですか? 困っているので回答お願いいたします。
- ベストアンサー
- 数学・算数
- 微分方程式の求め方について
はじめまして、微分方程式の解き方がわからず困っております。 問題は以下となります。 dΔf/dt=-5Δf-0.5 から Δf(t=0)=0として上記の微分方程式を解くと以下の式になる Δf(t)=-0.1{1-exp(-t/0.2)} このΔf(t)=-0.1{1-exp(-t/0.2)}がどうやって導いたのかがわからないです。 (ラプラス変換でも解けるみたいですが・・・) ご教授のほどお願いいたします。
- ベストアンサー
- 数学・算数
- 解けませんこの微分方程式
いつもお世話になっています。 独学でなんとか線形微分方程式や同次型まで理解しています。今 y'+(1/x)y+y^2-1/x^2=0 という方程式を解こうとしています。特殊解はとりあえず1/xが見つかりました。問題は一般解を求めるのですが、試しに最終的に求めたい 線形結合の解yをy=k+1/xとおいて(kが一般解です)代入し、 kとxの微分方程式を作りました。 果たしてここまであっているのかわからないのですが、ここから手が止まっています。また変数変換したりするのでしょうか。 わかる方詳しく教えていただけないでしょうか。お願いします。
- ベストアンサー
- 数学・算数
- 微分方程式の問題で
微分方程式の問題で 「a,bが任意定数のとき、次式が一般解になるような最小階数の微分方程式を示せ。 y = ax^2 + 2bx」 の答えがわかりません。 答えは一階の微分方程式で (dy/dx) + y = ax^2 + 2(a+b)x +2b となるのか 二階での微分方程式で x^2 * y" - 2xy' +2y = 0 となるのかで迷っていて、 一階の微分方程式が特殊解なのか一般解なのかの判断がつかないと言う状況です。 というのも教科書には 「限定状況を与えなければn階の微分方程式にはn個の任意定数を含む」 とあるのですがこの限定条件がわからなくて判断がつきません。 どちらが正しいのでしょうか?
- 締切済み
- 数学・算数
質問者からのお礼
ありがとうございました。