• ベストアンサー
  • すぐに回答を!

微分方程式について

以下の微分方程式の問題が分かりません。お願いします。 ◎次の同次微分方程式を、与えられた初期値の下で解け。 (d^2 x)/(d t^2)-2(dx)/(dt)-3x=0,x(0)=3,x^(1)(0)=1 という問題です。 x(t)=cε^(pt)を上記の式の代入して、 (p^2-2p-3)cε^(pt)=0 特性方程式は、H(p)=p^2-2p-3=(p+1)(p-3) になり、 特性根は、p0=-1,p1=3になる x(t)=c0 ε^(-t)+c1 ε^(3t) x(t)’=-c0 ε^(-t)+3c1 ε^(3t) になります。ここで、x(0)とx(0)’を求めるのですがここからがわかりません。 x(0)=c0+c1=3,x(0)’=-c0+3c1=1 と立てれるそうですが、それぞれの左辺は、分かりますが、右辺の3と1の意味が分かりません。なぜ、こうなりますか。 あと、ここからどうしたらよいですが。 お教えください。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22
  • ベストアンサー率55% (2225/4034)

>右辺の3と1の意味が分かりません。なぜ、こうなりますか。 問題に >(d^2 x)/(d t^2)-2(dx)/(dt)-3x=0,x(0)=3,x^(1)(0)=1 >という問題です。 ↑に初期条件 x(0)=3 と x^(1)(0)=x'(0)=1 が書かれています。 見落としていませんか? >x(0)=c0+c1=3,x'(0)=-c0+3c1=1 これをc0とc1の連立方程式として解き そのc0とc1を次式に代入すれば答が得られます。 >x(t)=c0 ε^(-t)+c1 ε^(3t)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分方程式について

    以下の同次微分方程式をとく問題について質問です。お願いします。 1) (d^2x)/(d t^2)+6(dx)/(dt)+9x=0,x(0)=3,x^(1)(0)=-4という問題です。 ------- 僕は、x(t)=cε^(pt) (p^2+6p+9)cε^(pt)=0 特性方程式:H(p)=p^2+6p+9=(x+3)^2 特 性 根:p0=-3,p1=-3 まで分かりましたが、ここから分かりません。 解答に、ここからのつづきとして、 x(t)=c0 ε^(-3t)+c1 【t】 ε^(-3t)の【】でしてある’t’の意味が分かりません。なぜ、c1 ε^(-3t)じゃないんですか。 また、解答に書いてあるx’(t)=-3c0 ε^(-3t)+c1 ε^(-3t)-3c1 t ε^(-3t)に成るのでしょうか。教えてください。

  • 1階非同次微分方程式の一般解について

    1階非同次微分方程式の一般解の解釈について不明点がございます。 一般化した1階非同次微分方程式:y' + p(x)y = q(x)の一般解は y = e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx + ce^(-∫p(x)dx) で表されるのは理解できるのですが、この一般解が非同次微分方程式の特殊解と同次微分方程式の一般解の和になっていることが理解できません。 つまり右辺の1項目、e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx が非同次方程式の特殊解になる理由がわかりません。 個人的に考えるに右辺の2項目のcが-∞~∞まで全ての値をとることが可能なので c=0の場合に、右辺の1項目は非同次方程式の特殊解になる、と勝手に推測しているのですがその考えでよろしいでしょうか? どなたかその辺詳しい方がいらっしゃいましたら是非ご教授お願い致します。

  • 微分方程式

    微分方程式を解き方についての質問です。 dx/dt=(2a-3x)/(2a-x) (aは定数) という微分方程式なのですが、これはどういう手順で解いていけばいいのでしょうか?左辺と右辺にxとtを分けるというのはわかるのですが、その後どうしていけばいいかわかりません・・・。 どなたかよろしくお願いします。

  • 微分方程式の問題です

    x(t)''+2ax(t)'+(1+a^2)x=sintを考える。 (1)同次方程式x(t)''+2ax(t)'+(1+a^2)x=0の一般解を求めよ。 (2)同次方程式x(t)''+2ax(t)'+(1+a^2)x=0に対して、初期条件x(0)=0,x(0)'=1を与えた時の特解を求めよ。 (3)a=0の時、非同次方程式x(t)''+2ax(t)'+(1+a^2)x=sin(t)の特解を求めよ。 以上です。 自分で解いたのですが、合っていますでしょうか?また、はずれていれば解説付きで解き方お願いいたします。ただし、(3)については解けませんでした。 (1) x(t)=C1exp{(-a+i)t}+C2exp{-(a+i)t} (2) x(t)=(-i/2)exp{(-a+i)t}+(i/2)exp{-(a+i)t} (3) a=0なので、x(t)''+x=sin(x)となって、未定係数法を使って解いた方がよろしいのでしょうか? その場合、x(t)=x(sin(x)+cox(x))とおいて、微分方程式に代入して解くのですか?

  • 微分方程式の特解計算について。

    現在、画像のような微分方程式を解いています。 左辺=0の同次解は容易に求めれるのですが、どうも特解(画像で言うとV(r,θ)です) が計算出来ません。 その原因が、右辺のベッセル関数です。 これまでは右辺が簡単なrのべき乗であったので単純に右辺を2回積分した関数形で 特解を仮定し、左辺に代入した後に係数比較で求めれました。 ところが、ベッセル関数が今回はあるのでどうしたら良いかわかりません。 何かいい方法ないでしょうか? ちょっとしたことでも何か提案がありましたらお願いします。

  • 微分方程式について

    よく微分方程式を解いていると、右辺と左辺両方に求めたいf(x)やyが残ったものが解になったりします。 それはf(x)を求めたいのに右辺にも残ることは解として認められるのでしょうか。

  • 微分方程式と積分

    1.次の微分方程式を解け。 (1)y''+2y'+y=3sin2x 同次微分方程式の一般解はu(x)=(C₁+C₂x)exp(-x) と求められるのですが、非同次微分方程式の特殊解u₀(x)が求められません。 どうやって求めればいいのでしょうか。 (2)y''-5y'+6y=x(exp(x)) 非同次微分方程式の特殊解u₀(x)はどうやって求めたらいいのでしょうか。 2.置換積分によって、次の定積分を求めよ。 1.∫[0→π/2] 1/(1+cosx)dx tanx/2=tと置いた後、どうすればいいのでしょうか。 2.∫[0→a] x^2(√a^2-x^2)dx(a>0) x=asintとおくと、dx=acost dt .∫[0→a] x^2(√a^2-x^2)dx=∫[0→π/2] a^2sin^2t*acos^2t dt このあとどうすればいいのでしょうか。 お願いします。

  • 微分方程式の解き方

    {d^2x/dt^2}-x=2(t^2)e^(-t) の微分方程式を解く問題で、解答を見ると、 d/dt=Dと置いて (D^2-1)x=2(t^2)e^(-t) ・・・<1> e^t(D^2-1)x=2t^2 ・・・<2> {(D-1)^2-1}(e^t・x)=2t^2 ・・・<3> (D^2-2D)(e^t・x)=2t^2 ・・・<4> (D-2)D(e^t・x)=2t^2 (1-D/2)(D(e^t・x))=-t^2 ・・・ とあるのですが、<2>から<3>のように変形できるのが良く分かりません。 <4>以降は理解できましたので、<2>から<3>のようにできる理由を教えてください。 微分方程式特有の計算のような気がしてならないのですが、 Dが普通の実数ならさすがにできませんよね。

  • 微分方程式

    dx/dt=a^2-x^2 (aは実数の定数) (1)この微分方程式は1階の線形同次・線形非同次・非線形のどれにあてはまるか。 (2)この微分方程式の一般解を変数分離法で求めよ。 考えたことは(1)は非線形だと思いますが、合っていますか? (2)はdx/(x^2-a^2)=-dtと変形し、両辺積分します。  すると、1/(2a)log(|x-a|/|x+a|) = -t + C このあとx=が分からないです。 教えてください。お願いします

  • 微分方程式について。

    微分方程式の一般解をもとめます。 (1)dy/dx=(y^2)+y これは、線形微分方程式を使ってとくのでしょうか?? (2)(x-y)y'=2y 同次形で解きましたが 途中の式、 ∫du(1-u)/(u+u^2)=∫1/xでの右辺の積分がわかりません。 両者の解答の導き方を教えてください。お願いします。