gef00675 の回答履歴

全207件中201~207件表示
  • 標準偏差の平均値の求め方

    二つの標準偏差σaとσbがあったとします。 このとき両者の平均値は(σa+σb)/2ではなく、 SQRT((σa^2+σb^2)/2) となるらしいのですがどうして単純に足して割るだけではだめなのでしょうか?

  • AB=BAならA,Bとも同じユニタリ行列で対角化可能を示せ

    Cを複素数体とする。VをC上の有限次元内積空間とする。 A,Bが正規行列(AA^*=A^*A,BB^*=B^*B)ならABも正規行列となる。 下記の問に答えよ。 [問] AB=BAならA,Bとも同じユニタリ行列で対角化可能を示せ。 P^-1AP,Q^-1BQ (P,Qはユニタリ行列)とA,Bは対角化されたとしてこれから P=Qを示したいのですが頓挫しております。 どうかお助けください。m(_ _)m

  • 対数

    対数のところを勉強してて 気になったことがあります 2つあるんですが まずは log27 9 = log3 9 / log3 27 という形に変形できますよね このように 記号で表すと log a b = log c b / log c a と表すことができます ここで自分がひっかかるところは 底のcの値はc>0であり 分母分子同じ底であれば 「何でも」いいのか? ということです もう1つは log z x ・log z y って出てきたらどう計算しますか? そのまま掛け算できますかね? 記号のまま計算するのは大変ですのでやり方さえ 教えていただければいいです 片方だけでもいいですが できれば 両方回答して頂けると幸いです

  • 3次元空間の点と直線の距離の公式って?

    直交座標に関して、 点(x[0],y[0],z[0])と、 パラメータtの直線(x,y,z)=(a,b,c)+t(p,q,r)との距離は、 L=√[{(q^2+p^2)*z[0]^2 +2(-qr*y[0]-pr*x[0]+bqr+apr-cq^2-cp^2)z[0] +(r^2+p^2)y[0]^2+2(-pqx[0]-br^2+cqr+apq-bp^2)y[0] +(r^2+q^2)x[0]^2+2(-ar^2+cpr-aq^2+bpq)x[0] +(b^2+a^2)r^2+2(-bq-ap)cr+(c^2+a^2)q^2-2abpq+(c^2+b^2)p^2} /(r^2+q^2+p^2)] とかけるようなのですが、どのように導けばよいのでしょうか? 計算が複雑すぎて、いい方針が立ちません。

  • 置換する際の存在条件(高校レベル)

    x^2 + y^2 = 1 x > 0 y > 0 のときの z = x^3 + y^3 の最小値を求める問題なんですが まず x + y = t と置いて x^2 + y^2 = t^2 - 2xy = 1 ∴ xy = (t^2 - 1) / 2 ここで z = x^3 + y^3 = (x + y)(x^2 -xy + y^2) = t * (t^2 - 3xy) = t * (t^2 - 3(t^2-1) /2) として微分してグラフを書いて値域を求めるんですが、 tの範囲が円のグラフから 1 < t < √2 となるのはわかるんですが、 変形の過程でいつその条件が現れてくるのか分かりません。 x + y = t とするときに t > 0 となるのと xy = (t^2 - 1) / 2 > 0 より t > 1 とするのはわかるんですが、いつ√2の条件が出てくるのでしょうか。 また、この条件は円のグラフをイメージしないとでてこないのでしょうか。 つまり a^2 = u と置くときに ∃a ⇒ u > 0 みたいな感じで、2乗の条件から出したり、 a > 0 , b > 0, a + b = 1 , a + 5 = z みたいなのがあって a = 1 - b として a を削除するときに ∃a , a > 0 ⇒ 1 - b > 0 より b < 1 みたいな感じで不等式から条件を出したりするようにはできないのでしょうか。 わかりにくくてすいません。よろしくお願いします。ちなみに強引に変形してyを消去してxで微分という方法はわかります。この方法での疑問点について答えてください。

  • 初期値問題

    α>0としたとき y’=|y|α乗 ,y(0)= 0 の解が一意的に存在するための必要十分条件がα≧1であることを示せ。 という問題の考え方を教えてください。 お願いします!

  • 初期値問題

    α>0としたとき y’=|y|α乗 ,y(0)= 0 の解が一意的に存在するための必要十分条件がα≧1であることを示せ。 という問題の考え方を教えてください。 お願いします!