• ベストアンサー

体 変数多項式環 既約多項式

体 K 上の 1 変数多項式環を K[X] とし,X^3- 2 によって生成される K[X] のイデアルを I とし、 剰余環 A = K[X]/I について。 K が有理数体 Q であるとき,X^3- 2 は Q[X] の既約多項式であることとA が体であることをどのように示していけばいいでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

どこまで詳しく書こうかな... まず、f(X) = X^3-2 が Q[X]の既約多項式であることを見るには、 ◯ 一つには、f(X+2) = X^3 + 6X^2 + 12X + 6 は、Eisensteinの判定法において 素数2を用いると、既約であると分かるので、元の f(X)も既約、でもいいし、 ◯ 今の場合 f(X)は3次式なので、f(X)が既約でないとすると、f(X)は1次以上2次以下の式を因子に持つが、どちらにせよ1次式を因子に持つことになるので、それを x-aと書けば、これは f(a) = 0を意味するが、X^3-2は有理数の根を持たないから、結局f(X)は既約となる、でもいい。 で、A=K[X] / I が体であることを言うには、結局 I がK[X]の極大イデアルであることを言えばいいが、I に含まれない任意のK[X]の元 gを取ると、、Iと{g}を含む最小のイデアル J = I + gK[X]が実は K[X]と一致する、つまり J∋1 を示せばよい。 ところでK[X] は単項イデアル整域なので(これはいいですよね?本を読んで確認するかしてください)、J はあるh∈K[X]で生成される(J=h K[X])となるが、ここでhがK[X]の単元でないとすれば、J∋ f(X)なので、これはfがhで割り切れることを意味するから、fが既約であることに反する。 従って hはK[X]の単元で、従って J= K[X]、よってIはK[X]の極大イデアルであるので、A=K[X] / I は体である。

rsyfivo3587
質問者

お礼

ご丁寧にありがとうございます! めちゃくちゃ分かりやすいです! 助かります! 参考にさせて頂きます!

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 多項式環の問題です。どなたかよろしくお願いします。

    多項式環の問題です。どなたか教えていただければ幸いに存じます。 R:=k[x,y] k:体 I:=(x^5-y^2)をRの単項イデアル ψ:R→k[t] (ψ(a)=a (a∈k) ψ(x)=t^2 ψ(y)=t^5) とする。 (1)I=kerψを示せ。 (2)IはRの素イデアルである事を示せ。 (3)剰余環R/Iの商体が有理関数体k(t)と同型である事を示せ。 です。(1)から分からなかったです。もちろん、I⊂kerψはわかるのですが… よろしくお願いいたします。

  • 2次体の整数環での既約剰余類群はありますか?

    有理整数環Zの剰余環Z/mZの部分集合 (Z/mZ)^*={[a]∈Z/mZ|a∈Z、gcd(a,m)=1} は乗法に関して群をなし、既約剰余類群と呼ばれます。 この整数環Zに対して、2次体の整数環Z[ω]で考えると、 剰余環はイデアルAを用いて、Z[ω]/Aとなりますが、 既約剰余類群に対応するものはあるのでしょうか? 2次体の整数環Z[ω]では、いつでも最大公約数があるとは限らないですが、 一意分解環(UFD)では最大公約数があるので、そのときは 既約剰余類群の対応物があるように思うのですが。 あるのでしたら、名前とか参考サイトを教えていただけないでしょうか? ないのでしたら、なぜないかを教えていただけないでしょうか。

  • 代数の既約多項式の問題です。

    代数の既約多項式の問題です。 a_n(x^n)+a_n-1(x^n-1)~+a_2(x^2)+a_1(x)+a_0=0 (a_0,a_1,・・・a_n∈Q:有理数) が既約とする。この方程式の解がn次未満のQ係数多項式の解とはならない事を示せ。 既約多項式:これ以上約せない多項式 わかる方いましたらよろしくお願いいたします。

  • 既約多項式

    複素数 α は α^3 =√-3 をみたすとき、X^6+3はQ[x]の既約多項式であるのは何故ですか。

  • 既約多項式

    f(X)=X^6+X^3+1 ∈Q[X]とおき、f(X)がQ[X]の既約多項式であることの示し方を教えて頂きたいです。

  • 整数環・多項式環

    さまざまな単位的可換環Rとその部分集合Iで、次の性質を満たすものを整数環や多項式環などについて、例をあげよ (1)加法部分群にならない (2)加法部分群だがイデアルでない (3)イデアルだが素イデアルでない (4)素イデアルだが極大イデアルでない (5)極大イデアルである なのですが、どれか一つでもいいので教えてください

  • 素イデアルの冪と準素イデアル

    R を実数体として、多項式環 R[x, y] のイデアルを考えます。 (x, y)^2 = (x^2, xy, y^2) = (x^2, y) ∩ (x, y^2) 上の関係では、素イデアルの冪が準素イデアルに等しくなっていますが、一般的には同じことがいえるのでしょうか。 有理整数環 Z と、体 k 上の多項式環 k[x], k[x, y] で調べてみたのですが、素イデアルの冪が準素イデアルにならない例を見つけられませんでした。 どうか、アドバイスをよろしくお願いします。

  • 既約多項式

    f(X)=X^6+X^3+1 ∈Q[X]とおき、f(X+1)の計算が分かりません。また、f(X)はQ[X]の既約多項式であることの示し方を教えて頂きたいです。

  • 環について

    F[X]は体F上の一変数多項式環とする。記号の簡略化のため、多項式f(X)∈F[X]が 生成するF[X]のイデアルをJ_fと表すことにする。 (a) F[X]の任意のイデアルは一元で生成される。 (b) f(X)∈F[X]がF上既約で、Fのある拡大体Lの元αについてf(α)=0であるとする。 このとき、F(α) =~_F F[X]/J_fである。 (=~_F はFの元は動かさないで=~であるとする。) (1) (b)においてF上既約という仮定を省くと、どのようなことが起こるか。例でもよい。 (2) 多項式f(X),g(X)∈F[X]についてJ_f = J_gとなるための必要十分条件を求めよ。 必要条件を考え、それが十分条件にもなっていることを確認せよ。 (3) f(X),g(X)∈F[X]に対して標準的な環準同型  φ:F[X]→F[X]/J_f+F[X]/J_g , γ→(γ+J_λ, γ+J_μ) が考えられる。 もし、f(X),g(X)が互いに素(つまり、これらが生成するイデアルがF[X]に一致する。) ならば、φが全射であることを示せ。また、そのとき、準同型定理から得られる同型を求めよ。 ※(1+J_λ,0), (0,1+J_μ)∈F[X]/J_λ+ F[X]/J_μに移る元が存在すれば、全射がわかる。  ただし、Fの単位元を1とした。 全然わかりません。わかる方いたらお願いします。

  • 一般のn次既約多項式は存在する?

    Kを0,1からなる体 とします。そこでK上の多項式を考えます。 1次,2次,3次,…の既約多項式を考えたとき、4次までの既約多項式は具体的に求めてみましたが、一般のn次既約多項式は存在するのでしょうか?直感的には存在しそうですが。。どなたか教えてください。

このQ&Aのポイント
  • Brother DCP-J952Nプリンターを使用してadobe acrobat reader dcのPDFを両面印刷する方法について教えてください。
  • Windows11でWifi接続されているBrother DCP-J952Nプリンターを使用してadobe acrobat reader dcのPDFを両面印刷する方法について教えてください。
  • Brother DCP-J952Nプリンターで両面印刷の設定ができない場合、adobe acrobat reader dcの印刷設定を調整する方法について教えてください。
回答を見る