ベストアンサー アンチウイルスソフトウェアと代数学の関係は? 2019/06/09 15:19 離散代数方程式論だけでワクチンは作れますか? みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー wormhole ベストアンサー率28% (1626/5665) 2019/06/09 15:28 回答No.1 作れません 質問者 お礼 2019/06/10 08:26 誠に有難う御座いました。 質問者 補足 2019/06/10 08:26 では、純粋数学の分野では、どれとどれが必要でしょうか。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) hiodraiu ベストアンサー率15% (451/2846) 2019/06/09 18:45 回答No.2 作れないです。 質問者 お礼 2019/06/10 08:27 誠に有難う御座います。 質問者 補足 2019/06/10 08:26 では、純粋数学の分野では、どれとどれが必要でしょうか。 通報する ありがとう 0 カテゴリ [技術者向] コンピュータープログラミング・開発その他(プログラミング・開発) 関連するQ&A 代数方程式 5次以上の代数方程式を代数的に解けないことの証明ってどうやるんですか? 代数学 非常に漠然とした質問なんですが…代数学ってなんなんでしょうか?? 私のイメージとしては… ・図形や関数ではなく、数や式 ・aljebraと英語表記するので、「移項」という意味から、方程式?? 代数って「数の代わり」ともとれますし… 「代数学」とは何かを調べてみてもいまいちよくわからなかたので… 代数学とは何かという定義とかってあるんでしょうかね?? 皆さんはどのようなイメージを持っていますか?? 専門としていない方の漠然としたイメージでも結構ですので、回答よろしくお願いします!! 代数学とは。幾何学とは。 一口に言うと、代数や幾何はどのような学問でしょうか。 (代数というと中高校レベルの連立方程式を解いたり、線形代数などのことはおよそ知っています。また、幾何というとユークリッド幾何は昔やったことがあります。) 代数的整数についてです。 代数的整数についてです。 1.そもそも、如何なる物ですか。何故、2次方程式の解でも、代数的整数に成らない物が有るのですか。 2.有理整数と同じ性質を持つ、と言われていますが、どんな性質ですか。 代数的数の分類 整数は0次の整数係数方程式の解と思うことができます 有理数は0 or 1次の整数係数方程式の解と思うことができます 代数的数は有限次の整数係数方程式の解と思うことができます この間に2,3,・・・次の整数係数方程式の解についての代数的位置付けはどのような形で示されているのでしょうか あまり、議論するようなことでもないのでしょうか? 5次以上の方程式が代数的に解けないことについて ガロア理論について質問です. 以前, http://oshiete1.goo.ne.jp/qa5614447.html こちらで質問させていただきました. そこで,ガロアは「5次以上の方程式が代数的に解けない」という結果を得るために群というものを用いて研究を進めたとの意見をいただきました. それは理解できたのですが,「5次以上の方程式が代数的に解けない」という事実は,どのような実用性があるのでしょうか? ガロアやそれ以前の人たちが考えた代数学というものは,現在数学やその他の分野で大変重要な役割を果たしていることは分かるのですが,「5次以上の方程式が代数的に解けない」という結果がどのような恩恵を与えてくれるのかがよく分かりません. 「現在このよな分野で役立っている」というような具体例があれば教えていただけますか? ちまみに私は現在,ガロア理論というものを基盤として,主に群や体,環などについて学習しています. まだ,「代数的に解けない」という導くとこまでは到達できていないのですが,その結果がどのような役に立っているのかが知りたいです. よろしくお願いします. 代数学の問題について質問です。 代数学の問題について質問です。 解き方がいまいち分かりません・・・途中式もお願いしたいです。 問 4次方程式 x^2 × (x+2)^2=0をフェラリの4次方程式の解の公式を使って解きなさい。 代数方程式について 5次以上の代数方程式に解は存在しませんが 存在しないという事を証明するのは実際に解を 求めるという事に比べどういう点に困難があるのかが 分からなくて困っています(--: 是非教えて頂きたいのでどうぞよろしく お願いしますm(_ _)m 線形代数はどんな学問? 線形代数の意味についてネットで調べてみると、サイトによって線形代数の意味にバラツキがあって結局分かりませんでした。 1.行列やベクトルの演算を扱う学問 2.連立一次方程式について扱う学問 3.ベクトル空間を扱う学問 一体どれが正しい意味なのでしょうか? 代数方程式について2 5次以上の代数方程式には一般解の公式は存在しませんが存在しないという事を証明するのは実際に解を求めるという事に比べどういう点が困難があると思われますか どうしても分からなくて困っているので 皆様のお力を貸してください。 よろしくお願いしますm(_ _)m 線形代数の参考書について 線形代数の続論でジョルダン標準形をやっているのですが、最小多項式、巾零行列、ケーリー・ハミルトンの公式辺りがよくわかりません。 参考書で勉強しようと思っているのですが、大体の線形代数の参考書ではジョルダン標準形しか載っていません。 そこで上に挙げたような内容も含んだ参考書を探しているのですが、何かいいものがありましたら教えてください。 線形代数学の参考書 線形代数学の参考書で、お奨めのものを教えてください。問題が多く、その解説が詳しいものを探しています。偏差値がそれほど高くない、4年制の大学工学部で、専門基礎としてならう、線形代数学?です。2,2行列で、固有ベクトルをあわせた2,2行列(名前がわからない)を使って、連立微分方程式を解く、などの内容を勉強します。また、定理の証明などは載っていなくて構いません。 代数学と線形代数 代数学と線形代数を独習しようと思うのですが、どちらからはじめるといいですか? log2(3)は代数的無理数? 超越数の定義について、高校時代は「どんな方程式の解にもならない実数のこと」と教わりました。 なるほど、ルート2はx^2=1の解だし、log2(3)は2^x=3の解だから「超越数ではない無理数、つまり代数的無理数」なのか・・・とそのときは納得したのですが、大学の数学の本を見ると、超越数の定義が高校時代に教わったのとは異なることに気づきました。 大学参考書には、超越数とは「どんな有理係数n次方程式の解にもなりえない実数」と書かれているのです。 有理係数n次方程式ということは、二次方程式とか三次方程式じゃないとダメですよね。2^x=3は有理係数n次方程式ではありません。 log2(3)は代数的無理数のはずですよね? だったら、log2(3)はどんなn次方程式の解になっているのでしょうか? cos 20°を代数的に求める 僕は今三角関数の値を近似値を用いずに代数的に求めることに挑戦しています。それで、3の倍数の角度については、正五角形の対角線の長さを利用して求めることができました。 そこで、今度は3の倍数でない20°のときの値を求めようと思って、以下の式を作ってみました。 cos 20°は、三倍角の公式より、 cos 3*20°=4cos^3 20°-3cos 20° cos 60° =4cos^3 20°-3cos 20° 1/2=4cos^3 20°-3cos 20° 0=4cos^3 20°-3cos 20°-1/2 cos^3 20°-3/4 cos 20°-1/8=0 ここで、cos 20°をxとおくと、 x^3-3/4 x-1/8=0 (^3は3乗の意味です) つまり、この三次方程式を解けば、cos 20°の値を求められると思うのですが、これがどうもよく解りません。カルダノの公式を使っても、何だかよく分からない結果になります。 パソコンに計算させると、恐らくこの式であっていると思うのですが… この三次方程式は、どうすれば虚数無しに代数的に解けるのでしょうか? 教えてください。 別に何かの問題とかではなく、単なる趣味ですので、暇なときに回答してくれれば嬉しいです。 加法定理の代数的な証明 三角関数の加法定理の証明は、幾何学的な証明によってされているのを見かけることはあるのですが、加減乗除・根の開閉などの代数的な方法で証明をされているのを見かけたことがありません。勿論、幾何学的な証明でも一部代数的な証明を用いてるのですが、一切幾何学によらない証明法はないでしょうか。5次方程式じゃあるまいし、実際に幾何学的に証明出来るのだから代数的にも証明出来て欲しいと思います・・・。どなたかご存知の方がいらっしゃったらお願い致します。 代数学について 現代科学において、数学における解析学と代数学の功績が大きく、これからも期待される分野であると聞きました。解析学は物理学と結び付きが強いので理解できますが、代数学については、いまいち、実感できません。一体、代数学はどんな分野で適応、または応用されているのですか?理系の分野だけでなく文系の分野でも、代数学の概念は応用されているのですか? 線形代数学の問題演習書 線形代数学で、AE-λE=0から固有値を求め、P^-1AP等を使って連立微分方程式を解く問題(AE-λE=0の行列式で、λに関する二次方程式が、異なる二解を持つ場合、重解を持つの両方の場合を含む)が載っている本を探しています。問題ある程度載っていて、その解説が詳しいものをお願いします。まだよく勉強をしていないので、うまく表現できなくて申し訳ありません。全ての大学で、大体内容は同じだと思うので書きますが、線形代数学2の分野です。ちなみに工学部。 代数の体論の計算問題について教えてください。 ご教授、宜しくお願いします。 問い 次の数は、有理数体Q上で、代数的であることを証明せよ。 (1)√3+³√2 (2)√2+√3+√5 解答 (1)√3+³√2は、x^6-9x^2-4x^2+27x^2-36x-23 の解である。 (2)√2+√3+√5 は、x^8-40X^6+352X^4-960X^2+576 の解である。 ある値aが解となるような方程式を見つけることが、代数的証明ぼ方針であることは、わかりましたが、(1)と(2)の値が、上記の方程式を満たすことがわかるためには、どのように解けばよいのでしょうか。宜しくお願いします。 代数学について 私は高校生です。 代数学について教えてください。どんな学問なのか。具体的に何を学ぶのか。どんなイメージを持ったものか。どんなところが魅力か。代数学は「抽象的なところが魅力」っていいます。それは他の分野にはないところなんでしょうか。 できれば高校生である私でもわかるように易しく教えて欲しいと思います。よろしくお願いします。
お礼
誠に有難う御座いました。
補足
では、純粋数学の分野では、どれとどれが必要でしょうか。