• ベストアンサー
  • 暇なときにでも

ゲーデルの不完全性定理って?

いろいろ調べたんですがいろいろあって意味不明です。 数学の定理なんですか?これ。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数128
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

数学の定理です.「主張」とか「哲学」ではありません. 「自分自身の正しさは,自分で証明できない」という部分が一人歩きして,何か哲学的なものと勘違いされる場面も多々ありますが,不完全性定理そのものはまったく数学の「定理」です. もうすこし正確に言うと, 「自然数論を含む,無矛盾な体系が無矛盾である証明は存在しない.」 ということになるかな. まず,「体系」とは有限個の公理から出発する数学などの体系です.公理は無条件に「真」であることが要請されている命題です. 「定理」とは公理から,真であることが証明される命題です. 「証明」とは,公理に対して推論規則を有限回あてはめる推論の羅列です. 「無矛盾」とは公理から,ある命題とその否定命題の両方が証明されないことです. 「完全性」とはトートロジーが証明可能なことです. トートロジーとは恒真命題のことです. 「不完全」とはトートロジーの証明が存在しないことです. 「自然数論」とは普通はペアノの・・・ ・・・・・ (以下略) ネットで調べたくらいでは,正確な理解は無理です. たとえば,関数f(x)がx=a で連続であることの定義を表す論理式は ∀ε∃δ∀x(ε>0 → (δ>0 → (|x-a|<δ → |f(x)-f(a)|<ε))) ですから,不連続とは ∃ε∀δ∃x(ε>0 & δ>0 & |x-a|<δ & |f(x)-f(a)|≧ε)) なんていう,論理記号の機械的な扱いをまず慣れてから,数理論理学の基礎を学べば,すぐに不完全整理に到達できますよ. 論理記号が体に染み付くまでに扱えるようになるには,数学科で2年間はみっちり解析学,線形代数学,群論,関数論,微分幾何,・・・といったことをやれば何とかなるかな.(機械的な操作だけを覚えても付け焼刃だから使い物にならない) うわべだけの理解を目指すなら,大きな書店の数学書のコーナーに「不完全性定理」というタイトルがいくつかありますから,どれか1冊マスターしてください. まぁ,ネットだけで理解できたらかなりの天才ですから,是非その道を究めてください. 不完全性定理の証明のアイディアは,無限個のトートロジーを並べたときに,「対角線論法」を使うことです・・・ってわかんないよなぁ. 対角線論法とは実数は自然数より濃度が大きいことを証明するカントール(だっけ?)のアイディアです. 濃度とは有限集合の場合は要素の個数を表します. 集合とは・・・・ きりがないのでやめます.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

・・・・難しいですね

関連するQ&A

  • ゲーデルの不完全性定理

    不完全性定理って結局、数学は不完全であるということが証明されたってことですよね?だとしたら、これから数学を研究することに何の意味があるのでしょうか?

  • ゲーデルの不完全性定理について

    ゲーデルの不完全性定理について ネットサーフィンをしていたときに、たまたま、ゲーデルの項目を見つけました。 当方、数学は素人なのですが、 ゲーデルの不完全性定理(ある公理系の中には、真偽を明確にできない命題が存在する) を僕たちが生きるこの世界、この宇宙にあてはめて考えると、 この世の中には、論理的には正しいとも間違っているとも証明できないことがらがあるということなのでしょうか。

  • ゲーデルの不完全性定理とは?

    入門書を読んで理解を深めてから質問しようと思っていたのですが、なにぶん多忙かつ 魯鈍であるため、ほとんど理解していない状態での質問をお許しください。 ゲーデルの不完全性定理の入門書を読むと、一般人向けの説明として次のように記述されて います。 ●自然数論を含むような数学的体系の無矛盾性を、その体系内で証明することはできない。 これは、分かりやすいく言うとどういうことなのでしょうか。論理記号式を使用しないと 説明は無理ですか。 不完全性定理は「自己参照」とか「自己言及」を行なった際に生じる、避けられない 困難性や矛盾の存在を言い表しているのだと思いますが、次のような(安直とも言える) 拡大解釈を許すような、普遍性のある定理なのでしょうか。 ●認識主体が自分自身を完全に認識することはできない。(認識) ●哲学が哲学を完全に定義することはできない。(定義) ●体制が自己の正当性を自分で証明することはできない。(証明)

  • ゲーデルの不完全性定理を詳しく教えてください。

    ゲーデルの不完全性定理を詳しく教えてください。

  • ゲーデルの不完全性定理を、小学生にも分かるように教えていただきたい

    本の中の不完全性定理の説明文で、 >「この命題は証明不能である」  という命題が証明可能であるならば、  この命題の中で主張している「証明不能である」ということと、  それが「証明可能」であるということとは、  「矛盾」していることになる。 とあるのですが、 どうして矛盾しているのでしょうか? (何となくはわかるのですが) 私は、小学生くらいの数学知識しかないので、 命題、証明の意味がよくわかってないのかもしれませんが、 たとえば 未確認物体(宇宙人みたいな)が、草原などにあったと仮定して、 解剖しても今の科学では、この物体は「なにか」わからない。 「この物体は証明不能である」 今の科学では証明不能であるということは、 証明可能なのではないのでしょうか (科学がまだ未発達ということで) ということとは意味が違うのですかね? 自分で書いていても、頭が混乱してきました・・・笑 数学の知識がある人には笑われる質問かも知れませんが、 「小学生(私)には、証明不可能」な問題を、 証明可能な方、教えて頂きたい。・・・笑 お願いします。

  • ゲーデルの不完全性定理

    ゲーデルの不完全性定理の証明のアイデアが知りたいと思い、適当な入門書(基礎論の教科書ではないです。)を読んでいるのですが、 まず、定理の主張が「形式的体系Tで通常の自然数を含み、強い意味で無矛盾であり、そこにおける公理や推論規則は帰納的に定義されているかまたはその数が有限であるようなもの、においては文GでGも¬Gも証明できないものが存在する。」 とあるのですが、形式的体系Tがなにを意味しているのかがよくわかりません。これは、形式的と書いてあるのだから文字通り「意味を考えない記号の世界(記号の集まりと、記号を並べて得られる列を変形するいくつかの規則)」と考えればよいのでしょうか? それで、もう一つ質問があるのですが、 まず、準備として記号 ¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zを用意して、 x,y,zを変数記号と呼びます。 それで、項を次のように定義します。 (i) 0,x,y,zは項。 (ii) t,sが項であるとき、'(t),+(t,s),×(t,s)は項。 (iii)このようにして得られるものだけが項。 (iV)'(t),+(t,s),×(t,s)を簡単にそれぞれt',t+s,t×sと記したりする。また、0',0'',0''',…をそれぞれ1,2,3,…と記す。 また、項tを上の記号の括弧としてではなく、見易さのための補助記号としての(,)を用いることにより、しばしばt(x,y,z)と記したりする。 次に論理式を次のように定義します。 (i)t,sが項のとき、t=sは論理式。 (ii)φとψが論理式でxが変数記号のとき、(¬φ),(φ∧ψ),(φ∨ψ),(φ→ψ),(∀xφ),(∃xφ)は論理式。 (iii)このようにして得られるもののみが論理式 (iV)見易さのために括弧を適当に省略して論理式を記すこともある。 以上により、与えられた記号列が項か論理式かそれ以外のものか判定できるようになります。 準備した記号¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zを普通に解釈することで、論理式の意味を考えることができるようになります。 ただし、'は後者関数と解釈します。 次に、¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zに 素数2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53を割り当てます。 記号列が与えられたとき、各記号を上記の対応に従い素数n_1,n_2,n_3,…に置き換え、2^(n_1)*3^(n_2)*5^(n_3)*…を対応させます。対応する数をゲーデル数と呼びます。 以上で準備は終わりで、 質問ができるのですが、 「mがTのある論理式のゲーデル数である」という非形式的な主張は mを素因数分解して各素数の指数を調べることである論理式のゲーデル数であるかどうかがチェックできるので、解釈すると「mがTのある論理式のゲーデル数である」という意味になる論理式が作れる、とあるのですが"具体的"にはどのようにして作るのでしょうか? 私は、論理式の定義が再起的であるから、「mがTのある論理式のゲーデル数であるかどうか」をコンピュータに判定させること(とてつもなく時間がかかりそうですが)可能だと思うので上のような論理式は作れると思うのですが、実際に作るとどんな論理式になるのか興味があります。

  • デーデルの不完全性定理の素朴な疑問

    具体的なことはよくわからないのですが、 数学の系が無矛盾ではありえないというのがゲーデルの不完全性定理 だとするなら、その不完全な数学によって設計された飛行機や 電車などが設計通りに動くのはなぜですか? 数学の不完全性というのは誤差の範囲なのでしょうか? お分かりの方いらっしゃいましたらご教授ください。

  • ゲーデルの不完全性定理で出てくる「証明できない」

    ゲーデルの不完全性定理の証明に関する本をいろいろ読んでみましたが(あまり厳密なものは読んでいませんが)、どの本を読んでいても理解が先に進まず立ち止まってしまうところがありました。それは、「証明できない」ということの定式化(言葉がこれで正しいのかわかりませんが)についてです。 ある論理式が「証明できる」というのは、使用できる「公理」と「変形規則(推論というのでしょうか、これも言葉が正確かすみません覚えていません)」を有限回使用してその論理式に実際に到達できること、という理解をしており、これは理解できます。 これに対してある論理式が「証明できない」というのは、以下の(A)(B)(C)のどの意味なのでしょうか。 (A)使用できる「公理」と「変形規則」を有限回使用してもその論理式に実際に到達できない、ということ。 (B)その論理式の否定が証明できる、ということ。 (C)その論理式が証明できない、ということを示す何らかの論理式に、使用できる「公理」を「変形規則」を有限回使用して実際に到達すること。 (A)かなとも思いますが、それってどのように理解すればよいのでしょうか。1000回使用して到達できなくても、1001回使用すれば到達できるかも知れないのでは?  (B)ではないと思っていますが自信がありません。 (C)は実際には(A)だったり(B)だったりする?。。判断ができません。 昔の一時期、結構悩みました。現在再チャレンジしていており同じ個所で悩んでいます。もやもやを晴らして頂ければ大変うれしいです。

  • 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。

    私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 (1)第2不完全性定理では 次の表現があり『公理系Nにおいて、その無矛盾性を証明することは不可能である』、そのなかで問題として『 真であるが証明不可能な主張とは何か。』に対して 答え『公理』とあり 自己言及を表現していることは 理解し易いのです。幾何学では5公理です。この理解はたぶん正しいと思います。 ところが (2)私がよく分らないのは 第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 「例えば無限遠点において平行線は交わるは証明可能である」はその例のようにおむのですが。つまり 例題には ユークリッド幾何学では未定義の無限遠点が現れており 証明はできない のです。いくら公理を増やして定義を明白にしても 未定義の領域はある ということです。 もう一つの例ですが 無限遠点は扱わないという6番目の公理を追加したとしても 例えば 「X・X=-1 は根がない は証明可能である」も証明できない と思うのです。なぜなら複素数は未定義だからです。つまり 『公理で定義されても未定義域は必ずある』が第一不完全性定理の一つの別表現ではないか と思うのです。この理解が間違っているのかどうか どなたかにお教えて頂きたかったのですが 

  • 不完全性定理から証明された「真理性 Ω は、ランダムである」とはどういうことですか?

    ゲーデルの不完全性定理の応用でチャイティンが、 「任意のシステム S において、そのランダム性を証明不可能なランダム数G が存在する」 という事を証明し、その後「真理性 Ω は、ランダムである。」という定理を発表したようですが、 この「真理性 Ω は、ランダムである。」とはどういう意味なのですか? 論理学も数学もほとんど無知ですが感覚的に分かるように説明して頂けませんか。よろしくお願いします。

専門家に質問してみよう