• 締切済み

可測関数でどうしてこれが同値関係?

宜しくお願い致します。 (Ω,Σ,μ)と(R,L(R),λ)を測度空間とします(Rは実数体,L(R)はルベーグσ集合体,λはルベーグ測度)。 この時, (ア)「f:Ω→Rが可測関数 ⇔ f^-1(E)∈Σ for∀E∈L(R)」 が可測関数の定義ですよね。 でも (イ)「f:Ω→Rが可測関数 ⇔ f^-1((r,+∞))∈Σ for∀r∈R」 も可測関数の定義となってます。 (ア)と(イ)が同値であることはどうすれば示せるのでしょうか?

  • mk278
  • お礼率61% (279/456)

みんなの回答

  • tmpname
  • ベストアンサー率67% (195/287)
回答No.2

> えっ? Tは完備化してはならないのでしょうか? ですから、「ルベーグ可測関数」の定義で、ルベーグ可測集合族(完備σ集合体)なのは、Σの方なのです。単純に、定義を本でもう一度確認しましょう。 一度定義をきちんと確認して、一旦受け入れた上で、後の議論を見てみると、この定義でうまく議論が進むことが分ります。

mk278
質問者

補足

遅くなりまして大変申し訳ありません。もう少し調べてみます。

  • tmpname
  • ベストアンサー率67% (195/287)
回答No.1

先ず、 > が可測関数の定義ですよね。 違います。 https://ja.wikipedia.org/wiki/%E5%8F%AF%E6%B8%AC%E9%96%A2%E6%95%B0 に書いてありますが、 「(Ω,Σ,μ) (R,T,λ)をそれぞれ測度空間とした時、全てのE∈Tに対して、f^{-1}(E)∈Σが成り立つ」、という時に、Σがルベーグ可測集合族、Tが『RのBorel集合族』の時、fを(ルベーグ)可測と呼ぶのです。 「右側」の「T」は、『RのBorel集合族』です。ルベーグ可測集合族ではありません。 そう(ア)を訂正すると、(ア)→(イ)は自明ですが、(イ)→(ア)も、(r,+∞)達が生成するσ代数を考えれば、そうなりそうだというのは理解できるのではないでしょうか。

mk278
質問者

補足

ご回答誠に有難うございます。 > Tが『RのBorel集合族』の時 えっ? Tは完備化してはならないのでしょうか?

関連するQ&A

  • この確率密度関数の理解で合ってますか?

    こんにちは。 確率密度関数の定義がよくわかりません。 en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem のaplicationの欄の 『Specifically, the probability density function of a random variable is the Radon?Nikodym derivative of the induced measure with respect to some base measure (usually the Lebesgue measure for continuous random variables).』 にて,確率密度関数の定義を考えてます。そこで確認させていただきたいのですが (Ω,Σ,P)を確率空間でX:Ω→Rを確率変数(Σ可測関数)とすると, ここでのinduced measureとはPX^-1という合成写像(これは累積分布関数と呼ばれる)の事ですよね。 このサイトでの ν:=P,g:=X,μ:=Pと看做せばよいのでしょうか(サイトではν,μとも同一の可測空間からの測度になっています)? つまり, P(X^-1((-∞,r]))=∫_{X^-1((-∞,r])}fdP ただし,r∈R という式を満たすΣ可測関数f:Ω→Rの事を確率測度Pによる確率変数Xの確率密度関数というのでしょうか?

  • 単関数Σ[k=1..n]a_k1_E_kが可測⇔E_1,E_2,…,E_kは全て可測

    証明問題です。 1_E(x)=1(x∈Eの時),0(xがEに含まれない時)という関数1_Eを定義関数(特性関数)という。 [命題] {x∈E;f(x)>r}(for∀r∈R)が可測ならば{x∈E;r≦f(x)≦r'}(r,r'∈R)も可測。 [問](Ω,B)を可測空間とする。 単関数Σ[k=1..n]a_k1_E_k (a_k∈R,E_k⊂Ω,1_E_kは定義関数(特性関数) (k=1,2,…,n))とする。 f:=Σ[k=1..n]a_k1_E_kがE:=∪[k=1..n]E_kで可測関数⇔E_1,E_2,…,E_kは全て可測集合。 [証] (必要性) fがEで可測関数だから∀r∈R,{x∈E;f(x)>r}∈B. それでE_i∈Bとなる事を示せばいいのだから fは単関数だからf(E_i)=a_iとなる定義域がある。 よって上記命題を使って,E_i={x∈E;a_i≦f(x)≦a_i}∈Bとなる予定だったのですが 関数値がa_iとなる定義域はE_iだけとは限りませんよね。 各a_1,a_2,…,a_kが全て異なる値なら 個々でE_i={x∈E;a_i≦f(x)≦a_i}∈Bと持って行けて命題が使っておしまいなのですが, もしかしたら同じ関数値を採る定義域がE_1,E_2,…,E_kの中に複数個あるかもしれませんよね。 (例えばf=(E_i)=f(E_j)=a_i) その場合,{x∈E;a_i≦f(x)≦a_i}=E_i∪E_jとなってしまい,E_i∪E_j∈Bで E_i∪E_jが可測集合である事は示せますがE_iひとつだけで可測になる事が示せません。 こういう場合はどうすればE_iだけが可測である事を示せますでしょうか?

  • 可積分関数の上界について

    [0、1]上のルベーグ可積分関数fに対して、  |f(x)|≦M、a.e x となるような正数Mは存在しますか?

  • 測度・ルベーグ測度について

    以下の問題がよくわからないので質問します。 (1) f:R→Rを単調増加な右連続関数とする。 (⇔f(x+0)=f(x),x∈Rかつ、x<yならば、f(x)<=f(y)が成立) f(∞)=lim(R→∞)f(R) f(-∞)=lim(R→-∞)f(-R)で定義する。 -∞<=a<b<=∞に対して、ρ((a,b])=f(b)-f(a)でρを定義すると、ρはA_R上の測度である。 カラテオドリ・ハーンの理論により作られる可測集合の族M_fとこの上の測度μ_fを考える。 このとき一点から成る集合{a}は可測集合(M_fの元)であり、μ_f({a})=f(a)-f(a-0)であることを示せ。 (2) R^n上のルベーグ可測集合の族M_(R^n)とその上で定義されたルベーグ測度μ_(R^n)を考える。 a>0とR^nの部分集合Eに対して、M_aE={ax=(ax_1,ax_2,...,ax_n|x=(x_1,x_2,...,x_n)∈E}で定義する。 このときE∈M_(R^n)ならばM_aE∈M_(R^n)かつμ_(R^n)(M_aE)=a^nμ_(R^n)(E)であることを示せ。

  • 確率空間(Ω,B,P)での可測と測度空間(Ω,B,m)の測度の違いって?

    ルベーグ積分の参考書に 確率空間(Ω,B,P)の上の関数fが任意のa∈Rについて {w∈Ω;f(w)>a}∈Bを満たす時,fを可測であるという。 と (Ω,B,m)を測度空間とする。任意のa∈Rについて区間(a,∞)のfによる逆象がBに属する。 f^-1((a,∞))={w∈Ω;f(w)>a}∈Bの時,fを可測という。 と二通り,可測について説明があるのですがどちらもPやmには無関係で同じことを言ってるような気がします。 違いがわかりません。 それぞれ呼び分けはあるのでしょうか?

  • Lebesgue測度μではμ(S\T)=μ(S)-μ(T)と変形できるの?

    Cantor集合の説明で [0,1]を3等分して(1/3,2/3)を取除くと[0,1/3]と[2/3,1]が残る。次に[0,1/3]と[2/3,1]を3等分して (1/9,2/9),(7/9.8/9)を取除く。 n回目には長さ1/3^nの区間2^(n-1)を取除いた事になるので取除かれた区間全体Gの長さμ(G) (μはLebesgue測度)は Σ[n=1..∞]2^(n-1)/3^n=1 …(1) 従って μ([0,1]\G)=μ([0,1])-μ(G)=(1-0)-1(∵Lebesgue測度の定義と(1))=0 でこの差集合[0,1]\GをCantor集合という。 でμ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのか分かりません。 Lebesbue測度の定義は下記のとおりだと思います。でもどうしても差集合のルベーグ測度が夫々のルベーグ測度の差になる事が導けません。μ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのでしょうか? [定義]Aを全体集合,B⊂2^Aとする。BがA上でσ集合体をなす時,AはBの可測空間をな すと言い,(A,B)と表す。 [定義] (A,B)を可測空間とする。写像f:B→R∪{+∞}は(A,B)上で測度をなす。 ⇔(def) (i) ∀A∈B,f(A)∈{r∈R;0≦r}∪{+∞},f(φ)=0 (ii) ∀m,n∈N\{0} (m≠n), b_m,b_n∈B且つ b_m∩b_n=φ⇒f(∪[k=1..∞]b_k)=Σ[k=1..∞]f(b_k) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度をなす。 ⇔(def) (i) f(2^A)⊂[0,∞],特にf(φ)=0 (ii) C⊂D(C,D∈2^A)⇒f(C)≦f(D) (iii) f(∪[n=1..∞]C_n)≦Σ[n=1..∞]f(C_n) (C_n∈2^A (n∈N)) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度とする。E(⊂A)は(A,B)上でf-可測 (集合)。 ⇔(def) ∀C∈2^A,f(C)=f(C∩E)+f(C∩E^c) [定義] R^nのm次元区間全{Π[i=1..m](a_i,b_i]\ {∞};a_i,b_i∈R∪{∞}(i=1,2,…,m)} (m≦n)をI(m,n)で表す。 [定義] R^nのm次元区間塊全体{∪[j=1..k]I_i;k∈N\{0},I^m∋I_1,I_2,…,I_k:互い に素}をC(m,n)で表す。 このとき,C(n,n)はR^nで有限加法族をなす。 [定義] 写像g:∪C(n,n)→R^nを C(n,n)∋∀∪[i=1..k]Π[ji=1..n](a_ji,b_ji]→g(∪[i=1..k]Π[ji=1..n](a_ji,b_ji]):= Π(b_i-a_i) (k=1且つΠ[i=1..n](a_j1,b_j1]は有界の時) sup{Π[i=1..n](d_i-c_i);(Π[j1=1..n](a_j1,b_j1]⊃)Π[i=1..n](c_i,d_i]は有界} (k=1でΠ[j1=1..n](a_j1,bj1]は非有界の時) 0 (k=1でΠ[j1=1..n](a_j1,b_j1]=φの時) Σ[i=1..k]g(Π[ji=1..n](a_ji,b_ji]) (k>1で ∪[i=1..k]Π[ji=1..n](a_ji,b_ji]∈C(n,n) (但し ,Π[j1=1..n](a_j1,b_j1],Π[j2=1..n](a_j2,b_j2],…,Π[jn=1..n](a_jn,b_jn]は互 いに素)の時) と定義するとこのgは可測空間(R^n,C(n,n))での有限測度をなす。 そして写像h:2^(R^n)→Rを2^(R^n)∋∀A→h(A):= inf{Σ[k=1..∞]g(E_k);A⊂∪[k=1..∞]E_k (E_k∈C(n,n) (n∈N\{0}))} で定義するとこのhは可測空間(R^n,C(n,n))で外測度をなす。 この時,このhをLebesgue外測度という。 [定義] 写像h:2^(R^n)→R∪{+∞}はルベーグ外測度とする。 L:={E∈2^(R^n);Eは可測空間(R^n,2^(R^n))上でh-可測}をLebesgue可測集合全体の集 合という。 [定義] hをLebesgue外測度とする。制限写像h|Lは測度をなす。 この時,この制限写像h|HをR^n上のLebesgue測度という。

  • このような関数が可測関数である事の証明がわかりませ

    宜しくお願いいたします。 B(C)を複素数体C上のボレルσ集合体を表すものとします。 更にE,F∈B(C),p∈F,f:E×F→Cは(E\N)×Fで連続とし(Nは零集合),fはpで偏微分可能とします。 g:E→[0,+∞)をE∋∀x→g(x):=sup{|(f(x,y)-f(x,y_0))/(y-y_0)|∈R;y∈F}と定義します。 この時,gは可測関数である事を証明するにはどうすればいいでしょうか?

  • 導関数の可積分性

    fをC^2級の函数とします。つまり二階導関数まで存在してそれは連続。 さらにfとf"はともに可積分(ルベーグ可積分)とします。 このときf'も可積分になることは示されるものなのでしょうか? 容易に出来る気もするのですが、混乱してできません。 もし万が一反例があるのなら、それを教えて頂きたいです。 あとこれだけの主張でも証明できるような気はするのですが、 fおよび、f"がともに有界(したがってf'も有界になりますが) という付加条件をつける必要があるのならそうしていただけるとありがたいです。 とにかくf'の可積分性がどうしてもいいたいです。

  • ルベーグ積分の反例を教えてください

    Rは実数体とします。B(R)をボレル集合体。 [Prop] (R,B(R),λ)を1次元ルベーグ測度空間,G∈B(R),λ(G)<+∞,そして可測関数f_nをlim[n→∞]f_n=0とする。 この時,lim[n→∞]∫_G f_ndλ=0. の反例を挙げてください。

  • ルベーグ積分 *可測関数

    次の問題を教えてください! f:R→Rを可測関数とする。g:R→Rを g(x)=f(x) f(x)≧0のとき,     -1  f(x)<0のとき, と定義すると、gも可測になることを示せ。 よろしくお願いします><