• 締切済み

数学の有理数について

(1) 以下の数を表す Q (有理数) の切断 (A₁,A₂) で A₂ が最小値を持たないものを定義せよ: 1, √5 (5 の平方根), ³√2 (2 の3乗根) ヒント: √2 (2 の平方根)を表す切断 (A₁,A₂) は次のように表せる A₁ = {x ∈ Q | x² < 2 または x < 0} A₂ = {x ∈ Q | x² > 2 かつ x > 0} A₁, A₂ のどちらかを定義してもう一方はその補集合としてもよい (2) Q (有理数)が R (実数)において稠密である,すなわち x, y ∈ R, x < y のとき,x < z < y となる z ∈ Q が存在する ということを切断を用いて書き換えよ.(x, y, z を切断で表す.証明は不要) 教えてくださいお願いします。

みんなの回答

  • f272
  • ベストアンサー率46% (8010/17118)
回答No.2

教科書を読めとしかいいようのないレベルですが,どこがわからないのですか?具体的に書いてください。

  • tmpname
  • ベストアンサー率67% (195/287)
回答No.1

(1) はヒントを真似ればいいですよね。(因みに、ヒントに書いてある切断が実数の2^(1/2)を表していることは、前提としてよいですよね) (2)「実数」x,yに対する「 x < y」というのは、その本では切断を使ってどのように定義されていますか。 それを確認すれば、後はそれを使って書きなおせばよい。 一度解いて、分からない事があれば補足か何かで下さい。

関連するQ&A

  • (x,y)に有理数があるかどうか

    x,yを実数としたとき(x<y)、区間(x,y)に有理数があることをしめすという教科書の問題を模範解答とは違う方法でやってみたので、間違ってるところを指摘もらえますか?よろしくお願いします。 有理数は上にも下にも有界でないので、p<x<y<qとなる有理数p、qが存在する。 1. (p+q)/2∈(x,y)ならば終了 2. そうじゃない場合 a) y<(p+q)/2 ならば (p+q)/2=q_1とし p<x<y<q_1 b) (p+q)/2<x ならば p_1=(p+q)/2とし (p_1)<x<y<q と区間を狭めていく。 そこからまた 不等式の両端を平均して、、、というのをくりかえす 有理数足す有理数÷2は有理数。 y-xは無限大や無限小ではないので、 有限回のうちに区間(x,y)に平均値を持つような有理数が出てくる といった感じでしめせてますでしょうか。。。?

  • 整数、有理数、実数について

    A0={p∈R:p<√2}Rは実数 A1={p∈Q:p<√2}Qは有理数 A2={p∈Z:p<√2}Zは整数 このときA0⊃A1⊃A2を示せ。という問題なのですが、明らかに自明なので一体どうやったら証明できるのかで悩んでいます。皆さんならどのように証明されますか?背理法が有効なのでしょうか?

  • cos(有理数*π)=有理数、などについてお尋ね(長文)

    先日、「cos(有理数*2π)=有理数となるのはどういったときか」 http://oshiete1.goo.ne.jp/kotaeru.php3?q=2212683 という質問に、親切なご回答を頂きました(感謝です)。 結果だけをまとめますと、 「mとnを互いに素な自然数とする。 cos{(m/n)π}が有理数となる⇔n=1,2,3 sin{(m/n)π}が有理数となる⇔n=1,2,6 tan{(m/n)π}が有理数となる⇔n=1,2」 ここで、新たに疑問が浮かびます。 http://www.iis.it-hiroshima.ac.jp/~ohkawa/math/math_prob_analy.htm の問題177で、 「a(但し、0<a<1/4とする。)を有理数とする時、tan(aπ)は無理数である。」 がGaussの整数環がPIDで有る事を使えば、容易に証明出来るとあります。 (僕が考えた証明、多分不備あり。) tan(aπ)が有理数とすると、 tan(aπ)=y/x(x,yは互いに素な自然数)とかける。 Gaussの整数x+iyを考えると、原点との線分がx軸とのなす角度は、 arg(x+iy)=aπ 有理数a=p/qとして、Gaussの整数x+iyをq乗すると、 arg(x+iy)^q=aπ*q=pπ つまり、 (x+iy)^q=実数 http://members.ld.infoseek.co.jp/aozora_m/suuronN/node57.html に書かれていることから、両辺を因数分解すると、単数倍の違いを除いて一意的。 右辺が奇素数を因数に持つとき、上記サイトの定理40より、 それはガウス素数か、(a+bi)(a-bi)の形になるが、左辺はそれを因数にもたないから不適。 右辺が2を因数に持つとき、上記サイトの定理40の上のコメントより、 それは単数倍の違いを除いて2=(1+i)(1-i)なので、左辺は、x+iy=1+iなどの場合に限られる。 このとき、0<a<1/4では、tan(aπ)=y/x=1に矛盾。証明終わり。 この問題は、aを有理数とするとき、tan(aπ)も有理数であるのは、a=整数or奇数/4と主張しています。 これを使って、Gaussの整数の観点から、cos(aπ)が有理数である条件を求めれないでしょうか?

  • 有理数と無理数

    ってありますよね 無理数は、πや平方根等がある、と習いました。 では、 √25   _   3 などはどうなんですか?√25は5と表わせられますが・・ それと、  4  _  √3  のように、分母が√の場合も無理数なんですか? それとも有理化できるので、有理数なんですか? 教えてください、お願いします。 中学3年です。

  • 指数関数の定義について

    『微分積分学』(笠原、サイエンス社)の命題2.31にの指数法則の証明のところでわからないところがあります。 まず、実数a>1および任意の実数xに対してa^x=sup(a^r)と定義します。ここでsupはr≦xとなるすべての有理数rについての上限です。 こう定義したときに指数法則を満たすかどうかについて。 任意の実数x,yに対して指数法則(a^x)(a^y)=a^(x+y)を示す証明の中で、2つの集合{r+s;r,sは有理数,r≦x,r≦y}と{t;tは有理数,t≦x+y}とが等しいとあります。 たとえばx=π,y=-πのときt=0は後者の元ですが、t=r+s,r≦x,s≦yとなる有理数r,sが存在するならばr≦π,-r≦-πとなりr=πとなってしまってπ(円周率)は有理数ではないので矛盾, つまり上の相等は成り立たないように見えます。 私の推論のどこがおかしいのか教えてください。

  • 実数の定義について

    実数の定義は、いろいろあるようですが、 "切断による定義" が理解できずにいます。 よく言われるのが、 " 有理数Qの切断を実数Rとする " というのがありますが、 そもそも有理数しかない集合を切断したところで、 なぜ実数が定義できるのか、よくわかりません。 これとは異なり、 " 有理数体における基本列(コーシー列)全体のなす集合を実数とする " というのは何となく理解できています。 (基本列の極限をとると無理数が生成される様子がイメージできる) 両者の定義は、数学的には同じということらしいですが、 とてもそうは見えません。 切断による実数の定義はどのようなイメージができれば 理解できますか?

  • 任意の2つの有理数間,実数間それぞれにかならず無理数が存在する?

    任意の2つの有理数p,q(p<q)間に必ずp<r<qなる有理数rが採れる事は r=(p+q)/2と採ればいい事はわかったのですが 任意の2つの有理数p,q(p<q)間に必ずp<r<qなる無理数rが採れる事、 そして、 任意の2つの実数p,q(p<q)間に必ずp<r<qなる無理数rが採れる事、 はそれぞれrをどういう風に採れますでしょうか?

  • n次関数のグラフの有理点の個数の可能性

    2次関数y=ax^2+bx+c(ただし、a,b,cは実数)の有理点の個数rの可能性は、r=0,1,2,∞で、r≠3,4,… (証明:r=0,1,2となる例をあげる。また、少なくとも有理点が3個あれば、実際は∞個あることを示す。) (a,b,c)=(1,1,√2)のとき、r=0 (a,b,c)=(1,√2,1)のとき、r=1 (a,b,c)=(√2,√2,1)のとき、y=√2x(x+1)+1なので、r=2 もし、少なくとも3個の有理点を持つとすると、2次関数の形は決定し、それはラグランジュ補間の公式を考えて、a,b,cは有理数となり、結局は有理点を∞個持つことになる。 (別解:a,b,cが有理数か無理数か2^3通りで場合わけ) (a,b,c)=(有,有,有)のとき、x=有ならy=有なので、r=∞ (a,b,c)=(有,有,無)のとき、x=有ならy=無なので、r=0 (a,b,c)=(有,無,有)のとき、有理点は(x,y)=(0,c)のみなので、r=1 (a,b,c)=(無,有,有)のとき、有理点は(x,y)=(0,c)のみなので、r=1 (a,b,c)=(有,無,無)のとき、y=無x+無となり、r=0,1 (a,b,c)=(無,有,無)のとき、y=無x^2+有x+無となり、y=√2x^2+x-√2の例を考えて、r=0,2 (a,b,c)=(無,無,有)のとき、y=x(ax+b)+cとなり、(x,y)=(0,c)は必ず有理点。-b/aが有理数だったら、(x,y)=(-b/a,c)も有理点となるので、r=1,2 (a,b,c)=(無,無,無)のとき、y=√2x^2+√3x+√6ならr=0。 y=√2x^2+√3x-√2-√3=√2(x^2-1)+√3(x-1)ならr=1。 y=√2x^2+√2x-2√2=(x-1){√2(x+1)+√2}ならr=2。 以上のことをn次関数で考えるとどうなるのでしょうか? できれば、上で言う(証明)と(別解)の両方を考えたいです。

  • 実数、有理数、無理数について

    初歩的な質問で恐縮なのですが、 ふとした疑問が沸いてしまったので教えてください。 R:実数 Q:有理数 P:無理数 φ:空集合 としたとき (1)Q+P⊂R Q∩P=φ (2)Q⊂P⊂R どちらですか?

  • 文字が有理数で基本対称式が整数なら元の文字は整数か

    x∈Q、y∈Q、x+y∈Z、xy∈Z ⇔ x∈Z、y∈Z (⇐の証明)Z⊂Qより。 (⇒の証明)a=x+y∈Z、b=xy∈Zとおく。 x、yはt^2-at+b=0の解 x、y={a±√(a^2-4b)}/2 x、y∈Qなので、√(a^2-4b)∈Q (a^2-4b)は平方数で、(a^2-4b)=c^2(ただしc>0)とおくと、 x=(a+c)/2、y=(a-c)/2 ここで、xy=(a^2-c^2)/4∈Zなので、 a、cはともに偶数かともに奇数。 よって、x=(a+c)/2∈Z、y=(a-c)/2∈Z ところで、 x∈Q、y∈Q、z∈Q、x+y+z∈Z、xy+yz+zx∈Z、xyz∈Z ⇔ x∈Z、y∈Z、z∈Z は成り立つのでしょうか? 反例、または証明を教えていただきたいです。 証明は、できれば、3次に限らずに一般に成り立つような方法を教えていただきたいです。