• ベストアンサー
  • すぐに回答を!

ベクトルの内積(余弦定理、鏡映)の問題を教えて下さ

Rⁿの内積に関する問題(余弦定理、鏡映)を教えて下さい。 この問題が分からず困っています 問題: 次の、Rⁿの内積に関する問題を解きなさい。 ただし、原点をOとして、点Xに対するベクトルOX をxと表わしている。 (1)-|a||b|≦a・b≦|a||b|より、cosθ=(a・b)/(|a||b|)でθ∊[0,π)を定義すると、θは幾何的なaとbのなす角と一致する事は既知として、△OABの∠AOB=θに関する余弦公式を示せ。 (ベクトルABをaとbを用いて書くとよい) (2)点Aを通り、法線ベクトルnを持つ超平面Πに関する鏡映Sπ:Rⁿ→Rⁿは Sπ(x)=x-{2(x・nーa・n)/(n・n)}・n で与えられる。鏡映は等距離変換であること、つまり|Sπ(x)-Sπ(y)|=|x-y|を示しなさい という問題です。 分かる方、教えて下さい。お願いいたします

noname#246158
noname#246158

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数385
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

(1) cosθ=(a・b)/(|a||b|) を辺の長さで表し直せば良いです。|a| = OA, |b| = OB です。a・b については、  AB² = (a-b)² = a² + b² -2a・b,  a・b = (a² + b² - AB²)/2 = (OA² + OB² - AB²)/2 と書けます。よって、cosθの式に代入して、  cosθ = (OA² + OB² - AB²)/(2 OA OB). (2) ごたごた考えるより愚直にやってしまうのが良い様に思います:  Sπ(x) - Sπ(y)   = x-y - {2(x-y)・n/(n・n)}n,  |Sπ(x) - Sπ(y)|²   = |x-y|² - 2(x-y)・n {2(x-y)・n/(n・n)} + (n・n){2(x-y)・n/(n・n)}²   = |x-y|²,  |Sπ(x)-Sπ(y)|=|x-y|■.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 理解できました

関連するQ&A

  • 余弦定理と内積

    余弦定理の一般的な公式は a^2=b^2+c^2-2bc・cosθ と表されますが、なぜピタゴラスの定理(直角三角形)に -2bc・cosθ を加える必要があるのでしょうか? また、 bc・cosθ だけみるとこれは <内積>:|a||b|cosθ とも見て取れる気がします。(あくまで僕個人の意見なんですが) もしかして余弦定理と内積の公式というのは関係性があるんでしょうか? そもそも内積の存在意義自体、僕は理解できていません。 僕は文系で物理のスカラーというものを知らないのでそういう人でも分かるような説明があるならば非常にありがたいです。

  • ベクトルの問題

    お世話になります。ベクトルの問題が解けないので、教えてください。 △OABにおいて、OA=2、OB=3、AB=4である。点Oから辺ABに下ろした垂線の足をHとする。→OA=→a,→OB=→b、とおくとき、 (1)内積→a*→bを求めよ。 (2)→OHを→a,→bを用いて表せ。 わかる範囲で自分の解答を載せると、 (1)は余弦定理よりcos∠AOB=(9+4-16)/2*3*2=-1/4 よって→a*→b=2*3*(-1/4)=-3/2 これ以外に何か解答はありますでしょうか。 (2)は→OH⊥→ABなので、内積0を使うと思うのですが、→OHをどう表すかわかりません。

  • 余弦定理の問題です

    1辺の長さが1の正四面体ABCDの辺AB上をを点Pが動く。 AP=x(0≦x≦1)∠CPDをθ(シータです。)とする。 cosθをxで表せ。 ヒント △ACPと△CPDに余弦定理を用いる △ACPにはCP^2=1^2+x^2-2・1・2/1と用いてx^2-x+1となるのはわかりましたが、△CPDへの用い方がわからなくて解説を見ると、 CP=DP、∠CPD=θより・・・。とありました。 このCP=DPはどこからわかるものなのでしょうか? また、このことがわからないということは基礎が抜けているということでしょうか? すいませんがよろしくお願いします。

  • ベクトルの問題です

    四面体OABCにおいて、OA=OB=OC=3、AB=BC=CA=√6である。 また、点Pは辺ABをx:1-xに内分し、点Qは辺OCをy:1-yに内分する。(0<x<1、0<y<1) OAベクトル=aベクトル、OBベクトル=bベクトル、OCベクトル=cベクトルとして次の問いに答えよ。 (1)内積a・bベクトルを求めよ (2)PQベクトルをaベクトル、bベクトル、cベクトル、x、yで表せ (3)2点P、Q間の距離PQの最小値と、そのときのx、yの値を求めよ (1)は、余弦定理を使ってcos∠AOBが2/3からa・bベクトルが6とだすことが出来ました。 (2)から分かりません。 出来れば詳しい解説をよろしくお願いします。

  • 余弦定理の問題

    空間内に4点A、B、C、Dがあり、線分BC上に点Eをとり、BE:CE=k:1-kとすると、 (1-k)(AB)~2+k(AC)~2-(AE)~2=(1-k)(DB)~2+k(DC)~2-DE~2 を示しなさいという問題です。 ヒントにΔABE,ΔACEに余弦定理を適用し、 (1-k)(AB)~2+k(AC)~2=AE~2+(1-k)(BE)~2+k(CE)~2 をはじめに示すと良い、とあるので、自分は、この二つのΔにおいて、辺AEが共通しているので、AEに余弦を用い、 AB~2+BE~2-2・AB・BEcos∠AEB =AC~2+CE~2-2・AC・CEcos∠AEC =AC~2+CE~2+2・AC・CEcos∠AEB と変形していったのですが、ここからの糸口がつかめません。(この方針が正しいかどうかわかりませんが。。。) よろしくお願いします。

  • ベクトルの内積に決まりはあるのでしょうか?

    こんばんは。 ベクトルの問題を解いていて、 問題 点Oを位置ベクトルの基準とし、2点A(a→)、B(b→)によって決まる次の図形ベクトルの方程式を求めよ。ただし3点O、A、Bは異なる点で、一直線上に無いものとする。 (1)点Oを中心とし、点Aを通る円の、点Aにおける接線 解答 求める接線上の任意の点をP(p→)とすると、点Aを通り、OA→が法線ベクトルである直線だから、OA→・AP→=0 a→・(p→-a→)=0 という問題なのですが、解答で内積を使っていて、 OA→・AP→=0とありますが、これは始点や、ベクトルの向きにこだわりがあるのでしょうか? AO→・AP→=0、というように始点をそろえると答えがかわってしまいますよね。。。 よろしくおねがいします!!!

  • ベクトル

    内積の一般の定義(絶対値が出てくるもの)と成分における定義を結ぶのは余弦定理らしいですが、具体的にどのようになっているのか教えてください。 お願いします。

  • 幾何ベクトルの法線と垂線に関する定義が理解できません。

    幾何ベクトルの法線と垂線に関する定義が理解できません。 どなたか、教えてください。 点P1(x1,y1)と直線、l:ax+by+c=0を想定する時、P1からlへの垂線の足をP0(x0,y0)と置きます。 直線lの定義により、直線lの法線ベクトルnは(a,b)と置けます。 参考書によると、この時n・p0+c=0とのことですが、ここが理解できません。 法線ベクトルとp0の内積とcがどのような関係性があるのでしょうか。 (例えば、直線lと法線ベクトルの内積が0である、ということなら理解できます。しかし、直線l上のベクトルをどのように式に表せばよいかがわかっていません。例えば、直線上に点P2をおき、(x2,y2)とすると、x2は式lを満たし、かつP2-P0とnの内積が0である、という表現しか思いつきません。) どなたか、解説をお願いいたします。

  • 数学II ベクトルの内積問題について

    高一です。以下の問題が分からず困っています。 (ちなみに→aというのはaベクトル、|a|は絶対値aのつもりです。 記号が分からなかったので適当におかせていただきました) 問一 ΔABCは,AB=√34,BC=4であり,ベクトルの内積に関して    →AB×→BC = 3→BC×→CA が成り立つとする.    線分BCを3:1に内分する点をHとし,→HA=→a,→HB=→bとおく.    (1) →aと→bが直角に交わることを示せ.    (2) |→a|,|→b|を求めよ.    (3) 内積→CA×→ABの値を求めよ. 問二 平面上にΔOABがあり,OA=5,OB=6,AB=7を満たしている.    s,tを実数とし,点Pを→OP=s→OA+t→OBによって定める.    (1) s,tが s,t≧0, 1≦s+t≦2 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ.    (2) s,tが s,t≧0, 1≦2s+t≦2, s+3t≦3 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ. 問三 ΔOABの辺AB,OBの長さをそれぞれ a,b とする. 辺OA上に OE:EA=1:4 となるように点Eをとる.    線分OCと線分BE,ADとの交点をそれぞれP,Qとし, 線分ADと線分BEの交点をRとする.    →a=→OA,→b=→OBとする.    (1) →PQを→a,→bで表せ    (2) →PRを→a,→bで表せ    (3) |→a|=√5,|→b|=1, →a×→b = 1のとき,ΔPQRの面積を求めよ さっぱりです。明日試験があるというのに… 教えていただけると幸いです。

  • ベクトルの問題

    ベクトルの問題で進研模試の過去問なんですけど (1)しか自力で解くことが出来ないので 分かる方は回答解説お願いします!! 問題 OA=2,OB=3,∠AOB=120°の三角形OABにおいて ベクトルOA=ベクトルa、ベクトルOB=ベクトルbとする。 また辺ABを3:1に内分する点をM、点Mと直線OBに関して 対称な点をNとする。 (1)ベクトルOMをベクトルa,bで表せ。   また、内積ベクトルa・bの値を求めよ。 (2)ベクトルONをベクトルa,bで表せ。 (3)直線OMとANの交点をPとするとき、ベクトルOPを   ベクトルa,bで表せ。 (1)はOM=1/4a+3/4b   a・b=-3となりました。 この続きを教えてください!!