• ベストアンサー
  • すぐに回答を!

中心極限定理について

中心極限定理で理解できないところがあります。 多分、何か勘違いをしているところがあると思うので、分かる方は教えてください。 平均値 μ*,分散 σ2* をもつ,任意の分布に従う乱数列 x1,x2, … ,xnがあるとき,その平均値 ave(xn) = (x1+X2+・・・+xn)/n の確率分布は,n が大きくなるとき,平均値 μ*,分散 σ2* / n である正規分布に収束する。  すなわち, (ave(xn) - μ*)/(σ*/√n) は,n が大きいとき,平均値 0,分散 1 の標準正規分布に従うとみなしてよい。 はどうやって証明するのでしょうか? また、12個の乱数rand()を発生させた場合、分散は12*1/12=1になるようですが、これは中心極限定理から分散がσ2/nの正規分布に近づくという結果(こちらは1/12を12で割っている)に矛盾しているように思うのですが、どこが勘違いしているのでしょうか? よろしくお願い致します。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

V(a*X) = a^2 * V(X) X, Yが独立のときにV(X+Y) = V(X) + V(Y) などの証明は終わっているものとします。 ave(Xn) = (1/n)*X1 + (1/n)*X2 +・・・+ (1/n)*Xn なので、ave(Xn)の分散は (1/n)^2 * V(X1) + (1/n)^2*V(X2) +...+ (1/n)^2*V(Xn) = (1/n)^2 * σ^2 + (1/n)^2*σ^2 +...+ (1/n)^2*σ^2 =(1/n) * σ^2 = σ^2 / n (X - μ) / σ で標準化できることも、期待値の線形性と、それから導かれる上に示した分散の性質とを使うと理解できると思います。 rand() については、Xそのものなので分散は1になるけれど、randで発生させた乱数の平均を取ったもの、というのをいくつか作ってみれば上に示したものに合っていることがわかると思います。たとえば、rand() 100個組を100組作ってそれぞれの組で平均を取り、出来上がった100個の平均値についてその平均や分散を調べてみると良いと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

平均値での平均と分散、合計値での平均と分散がごっちゃになっていたようです。 ありがとうございました。

関連するQ&A

  • 中心極限定理 実験

    中心極限定理に、 『母集団分布の平均、分散をμ、σ^2とすると、その分布が何であっても、nが大きければ、 Sn=X1+X2+...+Xnは、N(nμ, nσ^2)に、 Xmean=(X1+X2+...+Xn)/nは、N(μ, (σ^2)/n)に、従う。』 とあります。 これを実証しようと、エクセルで乱数を作りました。 RAND関数なので、母集団の平均μ=0.5、σ^2=0.083です。 サンプル10,000個を作成しました。 その合計Sn=S10,000のデータを30件取り、平均、分散を求めました。 平均は 5001.608 となり、 中心極限定理通りn×μに近い値になりましたが、 分散は460程度となってしまいました。 定理によれば、830付近になるとのことですが、このズレはなぜ発生するのでしょうか? よろしくお願いします。

  • 中心極限定理について

    中心極限定理についていろいろ調べたんですが、よくわからないことがあります。 (ほとんどの)任意の母集団(平均μ、分散σ^2)からn個の確率変数x1, x2, x3 .... xn を無作為抽出すると、平均値X を求めると、その平均値の分布は、nが大きくなると正規分布(平均μ、分散σ^2 / nの平方根)に近づく と書いています。 ある母集団分布をおいて、n = 6 として、 サンプル1: x1, x2, x3, x4, x5, x6 を抽出し、平均値 X1 を求める サンプル2: また、x1, x2, x3, x5, x6 を抽出し、平均値 X2 を求める サンプル3: また、x1, x2, x3, x5, x6 を抽出し、平均値 X3 を求める と同様に、やっていくのですよね? で、この「1回に抽出するデータがn」(上記では n = 6)であり、この nが大きくなると正規分布に近づくということなんですが、 サンプル数(平均値Xの数)はいくつを想定しているのでしょうか? サンプルが無限だったら、n = 2 だろうが、n = 100 だろうが正規分布のような気がするのですが。 いろいろなサイトで、 n = 1 や、n = 2 のケースでやったときの分布図が掲載されているのですが、これはサンプル自体の数が多いのでしょうか? n の意味と、サンプルの数(平均値Xの数) が混乱しているようです。 教えてください。

  • 中心極限定理と分布について

    中心極限定理により、不規則変数の加算によってできる不規則変数は、 平均値を中心に正規分布するようになるため z= y-6 は、平均:0、標準偏差:1の正規乱数となり、基本となる正規分布:N(0,1)と書く。 と書いてあるのですが、正規分布Nというのは山なりの感じの図でよろしいのでしょうか? 後これだけ見てz=y-6が平均0で標準偏差1というのもよくわかりません・・・ ノートを見てもzというのは書いてないのですが、数学関係でいう専門用語のzはなんでしょう。 また中心極限定理もよくわかりません、すいません・・・

  • PERT と中心極限定理 2

    中心極限定理は、次のような定理だと思います。 平均μ、分散σ2の母集団から無作為にn個の標本を抽出してその平均値mを求めることを繰り返すと、母集団がどのような分布を示す集団であるかに拘わらず、nが充分大きいとき、mの分布は平均μ、分散σ2/nの正規分布で近似される。 次に、PERTにおいて、n個の作業から成るプロジェクトの全体工程Tを求める方法は、一般に次のように説明されています。 作業iの所用時間がベータ分布に従うと仮定すると、その期待値ei、楽観値oi、最可能値mi、悲観値pi、分散σi2の間には次の関係がある。 ei=(oi+4mi+pi)÷6 (式-1) σi2=(pi-oi)2÷36  (式-2) 一般に平均と分散については加法定理が成り立つので、クリティカルパス上のn個の作業の総所要時間(n個の作業の所要時間の合計)Tの期待値eと分散σ2は次のように表される。 e=Σei  (式-3) σ2=Σσi2 (式-4) 中心極限定理により、Tは期待値e、分散σ2の正規分布で近似されるので、今、e=20、σ2=25であるとすると、95%の確率でTが完了する工期は、標準正規分布表の95%点=1.960から、20-1.960×5≦T≦20+1.960×5となる。 それで、次の(1)、(2)が分かりません。 (1)中心極限定理は、「平均μ、分散σ2の母集団から無作為にn個の標本を抽出してその平均値mを求めること」から始まる定理なのに、上記Tを求めた過程には、「平均μ、分散σ2の母集団」も「n個の標本の抽出」も「その平均値m」も、一切何もありません。母集団、抽出、平均値にあたるものは、上記Tを求めた過程のどの値または計算なのでしょうか。 (2)「中心極限定理により、Tは期待値e、分散σ2の正規分布」とありますが、いったいどう考えればTを正規分布であるとみなせるのでしょうか。

  • Rにおいて、中心極限定理を確認するために、乱数の標本平均のヒストグラム

    Rにおいて、中心極限定理を確認するために、乱数の標本平均のヒストグラムと正規分布のグラフを重ね合わせたいのですが、軸ラベルがおかしくなってしまいます。例えば、1000個の標本平均のヒストグラム hist(x)と平均0,分散1の正規分布のグラフを上手く重ね合わせるにはどうしたらいいですか?

  • PERT と中心極限定理

    中心極限定理は、次のような定理だと思います。 平均μ、分散σ2の母集団から無作為にn個の標本を抽出してその平均値mを求めることを繰り返すと、母集団がどのような分布を示す集団であるかに拘わらず、nが充分大きいとき、mの分布は平均μ、分散σ2/nの正規分布で近似される。 次に、PERTにおいて、n個の作業から成るプロジェクトの全体工程Tを求める方法は、一般に次のように説明されています。 作業iの所用時間の期待値ei、楽観値oi、最可能値mi、悲観値pi、分散σi2の間には次の関係がある。 ei=(oi+4mi+pi)÷6 (式-1) σi2=(pi-oi)2÷36  (式-2) 一般に平均と分散については加法定理が成り立つので、クリティカルパス上のn個の作業の総所要時間(n個の作業の所要時間の合計)Tの期待値eと分散σ2は次のように表される。 e=Σei  (式-3) σ2=Σσi2 (式-4) 中心極限定理により、Tは期待値e、分散σ2の正規分布で近似されるので、今、e=20、σ2=25であるとすると、・・・(と来て、Tの確率を求めるのですが、長くなるので以下省略します)。 ここで分からないのは、「中心極限定理により、Tは期待値e、分散σ2の正規分布で近似される」というところです。なぜ、いきなりこんなことが言えるのでしょうか。具体的に分からない点は次の(1)です。 (1)中心極限定理は、「平均μ、分散σ2の母集団から無作為にn個の標本を抽出してその平均値mを求めること」から始まる定理なのに、上記Tを求めた過程には、「平均μ、分散σ2の母集団」も「n個の標本の抽出」も「その平均値m」も、一切何もありません。一体これらは、上記Tにおいては、どこへ行ってしまったのでしょうか。

  • 有限母集団の中心極限定理

    訳あって確率統計の勉強をしておりますが、中心極限定理について質問があります。 「母集団の平均をm、分散をvとすると、そこから抽出したn個の標本の平均の分布は、平均m、分散v/nという分布になり、標本数をn→無限大とすると、分布は母集団の分布によらず正規分布に近づく。」 とありますが、母集団が有限個(N個)の集合ならどうなるでしょうか。 その場合、標本数をnがNに等しくなった時点で平均はm、分散0、つまり標本から母集団の平均が完全に推定(決定)することになります。 ●有限母集団の場合も中心極限定理は成り立つのか? ●成り立つならn→Nで分散が0になるという点はどう表現されるのか? このあたりを教えてください。

  • 大数の強法則、中心極限定理

    パラメータλ>0のポワソン分布の平均、分散は共にλである (1){x_n}に関する大数の強法則を式で書き下せ (2){x_n}に関する中心極限定理を式で書き下せ (3)S_x=X1+···+Xnの分布はパラメータnXのポワソン分布に等しいことを示せ (4)λ=1の場合の(2)、(3)を利用して次を示せ lim{n→∞} e^(-n)Σ{k=0~n} n^k/k! =1/2 わかるとこだけでも構いません! 解き方教えてください! 応用が利かない人なので、当てはめるとかが苦手なんです

  • 中心極限定理とパレート分布

    (1)所得はパレート分布もしくは対数正規分布をすると言われていますが、パレート分布においても、中心極限定理があてはまり、サンプリングを繰り返した時、正規分布するのでしょうか?もし、正規分布をするのであっても、母集団がパレート分布するはずの所得に対して、中心極限定理から導かれた分散、σ/√nを利用して所得の平均の信頼区間を推測することに違和感を感じます。大学の授業で先生が計算していました。 (2)所得の分布では、平均を見るよりも中央値の方が事実に近い結果を示すと言われていますが、平均(Σx_i/n)ではなく、期待値(Σx_i*P(X=x_i))で計算する方が、高額所得者に対しても低確率で重みづけられて、平均で計算するよりも妥当な値が得られそうなのですが、インターネットでも期待値で計算している例はありませんでした。統計学的に、このような計算をしない理由があれば教えてください。 初学者なので、間違いがあれば指摘していただけると幸いです。

  • 中心極限定理について

    お世話になります。 統計学で出てくる中心極限定理について基本的なことをうかがいます。 定理の内容はおよそ「母集団が任意の確率分布を持っていても、そこから抽出した標本分布は標本数nが無限大に近づくにつれて正規分布に近づく」といったことだと思いますが、nを無限大にもっていくとき母集団に近づくのに(というか母集団を超えることも)、たとえば母集団が正規分布していない場合でもそれが正規分布に近づいていくというのは矛盾がある気がするのですが、どこが誤っているのでしょうか。 詳しい方ご教示願います。