• ベストアンサー

状態密度について

金属中に点電荷q>0をおくと、位置→rにおける電子密度がn(→r)になったとします。このとき、点電荷まわりのフェルミエネルギーはどうなりますか。また、このとき、電子が受けるポテンシャルエネルギー変化を-eφ(→r)として、電荷密度変化δn(r→)=n(→r)-n_0が近似的にδn(→r)=D_Feφ(→r)となるようなのですが、これはどうやって示すことができるのでしょうか。ここで、D_Fはフェルミエネルギーでの状態密度で、|eφ(→r)|<<E_F(→r)です。φ(→r)の満たす方程式の導き方も知りたいです。回答お待ちしております。m(_ _)m

  • NRTHDK
  • お礼率60% (198/327)

質問者が選んだベストアンサー

  • ベストアンサー
noname#179540
noname#179540
回答No.1

状態密度の定義って知ってる?

NRTHDK
質問者

補足

教科書に載っている知識はありますが、今回のように点電荷をおくとどうなるのでしょうか。

関連するQ&A

  • トーマス・フェルミ遮蔽モデルについて

    原子のポテンシャルを求める方法としてトーマス・フェルミ近似があります。ポテンシャルφ(r)についてのトーマスフェルミ方程式を求める事が出来ません。どなたかコメントを宜しくお願いします。 ポアソン方程式 ∇^2φ(r)=-4πe[ρ(r)-ρ_0] (ρ_0:平均電子密度、ρ(r):電子密度) と フェルミエネルギーの式 E_F+eφ(r)=(h^2/8π^2m)[3π^2ρ(r)]^(2/3) (E_F=(h^2/8π^2m)[3π^2ρ_0]^(2/3):フェルミエネルギー) を用いて、トーマス・フェルミ方程式 ∇^2φ(r) = α φ(r)^(3/2) (αは係数を適当にまとめたもの) を求めたいのですが、ρ_0の項が残ってしまいます。つまり ∇^2φ(r) = α φ(r)^(3/2) + 4πeρ_0 のようになってしまいます。なんとかρ_0の項を消したいのですが。 最終的には φ(r)=χ(r)/r と置いて、 微分方程式 r^(1/2)χ''(r)=[χ(r)]^(3/2) まで求めたいのですが、導出出来ません。 途中で [1+eφ(r)/E_F]^(3/2)~1+(3/2)(eφ(r)/r) の近似を用いて湯川ポテンシャル型を導く事は出来ます。 参考にしている本は山下次郎著「固体電子論」朝倉書店p.153です。 宜しくお願いします。

  • 状態密度について

    カーボンナノチューブ(CNT)の状態密度分布(横軸:エネルギー、縦軸:状態密度)に関しての質問させて頂きます。 CNTの状態密度分布を見ますと、CNTが半導体的性質を持っている場合(伝導帯に電子が無い)にも関わらず、フェルミレベル(図中では0eV)以上のエネルギについて状態密度があるように描かれています。 今まで私は状態密度分布の図においてフェルミレベル以上のエネルギの状態密度は、伝導帯にある電子の密度を表していると思っていたのですが、これは間違っていたのでしょうか。 まだこの分野に関して勉強を始めたばかりですので説明不足の点があるかと思いますが、御回答宜しくお願いいたします。

  • 状態密度について

    状態密度について すいません。グラフに左と右と書いてあるんですが、上と下でお願いします。 状態密度g(E)=単位エネルギーあたり単位体積あたりに何個の電子が入るか だそうです。 単位は[eV^(-1)cm^(-3)]です。 授業で先生が主に上の方の図を書いてたんですが、一次元量子井戸の状態密度の所で下の図を書きました。でも、三次元量子井戸の所では上の図を書きました。 1次元量子井戸の時はなんで下の図のようになるんでしょうか? 授業の内容が難しくて具体的に何をやっているのか分りませんでした。 なんで、状態密度はエネルギー?に比例したり反比例したりするんでしょうか? そもそもエネルギー?とは何のエネルギーなんでしょうか? 状態密度とかフェルミ準位とかフェルミディラック分布関数とかマックスウェルボルツマン関数とか意味が分りません。 具体的に何をしているのか分りやすく具体的に教えてください。 お願いします。

  • 自由電子モデル ~フェルミエネルギー、状態密度など~

    この問いがなかなか意味がわかりません!でも試験に出るんです助けてください!! 自由電子系のエネルギーに関する以下の問いに答えよ。但し、自由電子系の状態密度g(E)[J/m3]はエネルギーEによらず一定値g。をもつとする。 T=0Kでの単位体積あたりの電子系のエネルギーEtot[J/m3]、および単位体積あたりの電子数N[1/m3]を算出し、g。とフェルミエネルギーEfであらわせ。

  • 磁性と状態密度について

    固体物理の問題です。絶対零度で電子密度Nの金属に磁束密度Bの磁場を印加した。 磁場によるゼーマンエネルギーが化学ポテンシャルよりも十分小さい場合に、単位体積あたりの磁化の大きさMはどうなるか。ただし、電子の磁気モーメントをμ_Bとし、電子の運動によるローレンツ力の影響は考えない。よろしくお願いします。

  • 半導体物理の初歩:正孔の状態密度関数について

    半導体を学習しております。 伝導体へ励起されたエネルギーE電子の状態密度関数D_eが D_e(E) = (1/2π^2)*[(2*m_e/h_bar^2)^(3/2)]*[(E-Ec)^(1/2)] ただしm_eは電子の有効質量、h_barはプランク定数エイチ・バー、Ecは伝導帯の下端エネルギー となるのは、自由電子についての統計物理学における状態密度の議論と、E-Ecが電子の運動エネルギーを表すのかなー、と思ったら、伝導帯での電子を自由電子の状態密度で第一近似的に求めたんだな―、と納得できるのですが、 正孔の状態密度D_h D_h(E) = (1/2π^2)*[(2*m_h/h_bar^2)^(3/2)]*[(Ev-E)^(1/2)] ただしm_hは正孔の有効質量、Evは価電子帯の上端エネルギー とあらわされるのが、全然理解できません。 キッテル第8版を読んでいるのですが、この式は219ページで天から降ってくるように書かれています。 どなたかご助言を、お願いします。

  • 分布関数と状態密度関数について質問です。

    分布関数と状態密度関数について質問です。 以前、何かの固体物理学の本(具体的には忘れました。。)で、   d(F(E)D(E))/dE=0・・・(*)(分布関数と状態密度関数の積のエネルギー微分がゼロ) F(E)はフェルミの分布関数 が成り立つことを利用して式変形をしてありました。 その時は「ふーんそうなんだ」としか思っておりませんでしたが、 今になって、実際に、3次元ではD(E)は√Eに比例するとして、計算してみましたが、 (*)式が成り立ちませんでした。 (*)は成立つのでしょうか。成立つならその根拠、理由を教えてください。 また、ある条件下では成立つということも考えられるとおもいますが、そのような条件はありますでしょうか。 よろしくお願いいたします。

  • 電束密度

    ある問題集の電束密度の問題ですが、教えてください。 円柱座標で、r<=a, z=0 の円盤が、電荷密度 p(r,theta)で表せる電荷を帯びている。zが円盤に非常に近いとき(0<z<<a)、適当なガウス曲面を使って近似的な電束密度Dの値を求めよ。(答え。0.5p(0,theta))

  • 内殻準位の化学シフトと電荷密度の関係(XPS/ESCA)

    こんにちは。XPSに表れる化学シフトについて質問させてください。 XPSの化学シフトには分子内の化学的環境が反映されていて、励起対象である原子周辺の結合状態の違い(電荷密度の違い)によって内殻のイオン化ポテンシャルが変化することがその原因であると聞いています。電荷密度の違いによって、外殻電子による内殻電子に対する遮蔽が異ってくるために、内殻電子の束縛エネルギーが変化する、という説明を受けました。 そこで質問なのですが、なぜ電荷密度と内殻イオン化ポテンシャルにそういった関係が表れるのか、よく理解できないでいるのです。そもそも、この説明を正しい理解と考えていいのか疑問があるのです。 例えばアセトン分子CH3C(O)CH3の炭素内殻領域のXPSを考えます。 アセトンには化学的環境の異なる2種の炭素原子(仮にC1とC2)があって、化学シフトが表れると思います。 確かに、隣接原子の電気陰性度の違いから、上述の電荷密度変化によるモデルを用いて説明はできます。 しかし、イオン化ポテンシャルの値が“基底状態とイオン化状態の全エネルギー差(下記の式)”によって計算されることを考えると、(基底状態はどの炭素をイオン化する場合でも同じだから、)それぞれのイオン化状態の安定性がカギになると思うのです。   IP = E(C1をイオン化) - E(基底)   IP = E(C2をイオン化) - E(基底)  ←E(基底)はどちらも当然同じはず・・ なので、基底状態における電荷密度の違いが化学シフトに関係するということは、それがイオン化状態の安定性にも影響を与えるということになると思います。 質問をまとめると、まず、 ・電荷密度の違いに起因する外殻電子の遮蔽の違いが内殻の束縛エネルギーを変化させるという説明はあくまでごく定性的なもので、正しい理解ではないのではないか。 ・基底状態の電荷密度とイオン化状態の安定性にはどのような関係が考えられるのか。 ということです。 そして、いろいろと書きましたが、教えていただきたいのはつまり ・XPSの化学シフトは何が原因で起こるのか ということに尽きます。。 若輩者ゆえ全く的外れな考えをしているかもしれませんが、何卒ご容赦ください。 それでは、些細なことでも結構ですので回答、アドバイスをよろしくお願いいたします。

  • 化学ポテンシャルと粒子数─μが上がると占有数が増える!?

    化学ポテンシャルについて、一応(かなり)、判ったような気になっておった のですが、最近、フェルミ分布とボース分布の場合の式を見ていたら、 ふと、混乱し始めてしまいました。 化学ポテンシャル=逃散能とも言われ、高いほど、粒子が逃げていく のだ、と理解していたのですが、たとえばフェルミ分布では、 よく知られているように、エネルギーε準位の平均占有数n(ε)は、 n(ε)=1/[exp(-(ε-μ)/kT)+1] となり(フェルミ分布)、この式ではμが大きいほど、n(ε)が大きくなっ てしまいます。 もちろん、私の、この言い方は間違いで、 「N=∫n(ε)D(ε)dε が全粒子数の平均値になるようにμを決める」 というのが教科書に書いてあるきまり文句です。教科書では、 μの温度変化の近似計算に忙殺され、それ以上書いてあるもの はあまり見かけません。 「μはポテンシャル高いほど粒子が居なくなる」というイメージと どうしても合わず、悩んでおります。 うーん、情けない。どこで考え違いをしているのでしょうか。