• ベストアンサー

重積分(変数変換)の計算

【問題】∬D x dxdy D : x^2+y^2≦x x=rcosθ,y=rsinθとおくと、領域Dは何に写されるのでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

Dの式にx=rcosθ,y=rsinθ(r≧0,0≦θ<2π)を代入すると  r^2≦rcosθ  r(r-cosθ)≦0  0≦r≦cosθ >x=rcosθ,y=rsinθとおくと、領域Dは何に写されるのでしょうか。 D:{(x,y)|x^2+y^2≦x} ⇒ E:{(r,θ)|0≦r≦cosθ,0≦θ<2π} と領域Dは領域Eに変わる(写像される)。 積分は以下の通り。 ∬_D x dxdy=∬_E rcos |J|drdθ=∬_E rcos rdrdθ 累次積分に書き換えて =∫[0→2π] cosθdθ∫[0→cosθ] r^2 dr =∫[0→2π] cosθdθ[(1/3)r^3][r:0→cosθ] =(1/3)∫[0→2π] (cosθ)^4 dθ =(1/3)∫[0→2π] (1/4)(1+cos(2θ))^2 dθ =(1/12)∫[0→2π] (1+cos(2θ))^2 dθ =(1/12)∫[0→2π] (1+2cos(2θ)+(cos(2θ))^2) dθ =(1/12){2π+∫[0→2π] (cos(2θ))^2 dθ} =(1/12){2π+∫[0→2π] (1/2)(1+cos(4θ)) dθ} =(1/12){2π+∫[0→2π] (1/2) dθ} =(1/12)(2π+π) =π/4

rafelt
質問者

お礼

ご回答ありがとうございます。 どのように導いていくか納得することができました。

関連するQ&A

  • 重積分の計算について

    以下の重積分の解き方がわからず、困っています。 x=rcosθ,y=rsinθを使えばいいのかなとは思ったのですが、 具体的にどう処理すればいいのかわかりません。 申し訳ありませんが、考え方だけでもご指導お願いできますでしょうか。 【問題】 次の計算をせよ。すなわち、2重積分または類次積分の値を求めよ。 D={(x,y) | 0≦x, 0≦y, x^2+y^2≦1} ∫∫D (y) dxdy 以上、ご指導のほど、よろしくお願いします。

  • 極座標による重積分の範囲の取りかた

    ∬[D] sin√(x^2+y^2) dxdy  D:(x^2 + y^2 <= π^2) を極座標でに変換して求めよ。 という問題で、 x = rcosθ、y = rsinθ とおくのはわかるのですが、 rとθの範囲を、どのように置けばいいのかわかりません。 x^2+y^2 = (rcosθ)^2 + (rsinθ)^2 = r^2{(cosθ)^2 + (sinθ)^2} = r^2< = π^2 とした後、-π =< r =< π としたのですが、合っているのでしょうか? rとθの範囲の取りかたを教えてください。お願いします。

  • 重積分の問題なのですが・・・。

    重積分の問題なのですが・・・。 ∬(y-6)(x^2+y^2)^(1/2)dxdy 積分区間はx^2+y^2<=4です。 x=rcosθ, y=rsinθとおいて、積分区間の条件より 0<=r<=2, 0<=θ<=2πとおける さらにこのときdxdy=rdrdθとなる 与式=∫[o<-2π]∫[0<-2]{rsinθ-6)(r^2cos^2θ+r^2sin^2θ)^(1/2)}rdrdθ   =∬{(rsinθ-6)r^2}drdθ   =∫[1/4sinθr^4-2r^3](0<-2)dθ   =∫(4sinθ-16)dθ   =[-4cosθ-16θ](0<-2π)   =(-4-32π)-(-4)   =-32π とマイナスになってしまいました、どこが間違えているのでしょうか? すみませんがよろしくお願いします。

  • 2重積分 変数変換をする場合 どなたか教えていただけないでしょうか?

    1.∫∫(x^2+y^2)dxdy  D={(x,y)|(x-1)^2+y^2≦1} 2.∫∫e^(-(x^2+y^2))dxdy D={(x,y)|0≦x,0≦y} 上記の問題について、変数変換を使用するんだろうなとは解るのですが、そこから実際どうやって解いていくのかわかりません。 1については(x-1)=rcosθ,y=rsinθとして変数変換するのでしょうか? 2については、x=rcosθ,y=rsinθとして考えてみたのですが、Dの領域が座標変換した場合にどうなるのかさっぱり見当が付きません。 変数変換をするところから答えを導出するまで、詳しい過程を教えていただける方がいらっしゃいましたら、よろしくお願いいたします。

  • 重積分 変数変換 絶対値

    画像の解き方がわかりません。 絶対値がなければx=rcosθ y=rsinθと置く方法は知ってますが、どうすればよいか教えてください。

  • 重積分を使って曲面積を求める問題でわからないところがあります。

    重積分を使って曲面積を求める問題でわからないところがあります。 球面x^2+y^2+z^2=a^2の円柱x^2+y^2=axで切りとられる部分の曲面積を求めよ(a>0) 自分の解法は  z(>0)について解いてz=√(a^2-x^2-y^2),積分領域D:x^2+y^2<=axの上にある曲面積を2倍して Zx=-x/(a^2-x^2-y^2), Zy=-y/(a^2-x^2-y^2)より 求める曲面積s=2∬D √(1+Zx^2+Zy^2)dxdy ここでx=rcosθ,y=rsinθと置くとJ=r,積分領域DはM:0<=r<=acosθ,-π/2<=θ<=π/2 S=∫(-π/2→π/2)∫(0→acosθ)ar/√(a^2-r^2)drdθ =2a^2[θ+cosθ](-π/2→π/2)=2a^2π となったのですが、解答は D:x^2+y^2<=a^2,y>=0の上にある曲面積を4倍して求めていて、 S=4∫∫D a/√(a^2-x^2-y^2)dxdy ここでx=rcosθ,y=rsinθと置いて、M:0<=r<=acosθ,0<=θ<=π/2 S=4∫(0→π/2)∫(0→acosθ)r/√(a^2-r^2)drdθ =4a^2[θ+cosθ](0→π/2)=4a^2(π/2-1) となって答えが違ってしまうのですが、何故だかわかる方がいたら助けてください。

  • 重積分について 困っております

    重積分について。 次の問題の答え,解き方を教えてもらえませんか。 1 ∬D(x+y)^2sin(π|x-y|)dxdy, D={(x,y)∈R^2;|x+y|≦1,|x-y|≦1 1について。 おそらくx+y=u, x-y=v とでもおき、 変数変換をして解くのだと思ったのですが 被積分関数の絶対値が気になり 未だに解けません;; 被積分関数に絶対値が存在した場合 どうすれば良いか。 場合分けが必要かな?と考えましたが自分の力では解けませんでした。 力を貸して頂けたら幸いです。 あともう一問 質問させて下さい。 2 ∬D log(1+x^2+y^2)dxdy, D={(x,y)∈R^2; x+y≧0, x^2+y^2≦1} こちらの問題はパっと見た時に広義積分かな?と思いました。 特異点を探そうとしましたが x^2+y^2=-1 を満たす実数が無いので特異点はなし。。。 極座標変換をして x=rcosθ y=rsinθとおいてみましたが 特異点がないのに広義積分??となってしまい、 頭がパニックになってしまいました。 特異点が見つかればそこに制限をつけて最後に極限で飛ばせば解ける。。と理解していたもので・・・ 文章が拙なくて申し訳ございません。 どなたか回答お願いします

  • 極座標を用いた重積分

    極座標を用いて重積分をし、最終的に広義積分を求める問題なのですが、非常に煩雑でどうも手がつかないので、教えていただけると助かります。 ∬[D]exp(-px^2-qy^2)dxdy (p,q>0) D={(x,y);x≧0, y≧0} というものです。 x=rcosθ,y=rsinθ と極座標表示をし、積分区間を 0≦r≦R, 0≦θ≦π/2 として積分をし、R→∞とすれば求まるのはわかるのですが、pやqがあるせいで、変数変換をしてもexpの中にθとrが混在しているので、どうやっていいのか途方に暮れています…。 よろしくお願いいたします。

  • 重積分について教えてください。

    重積分の回答を教えてください。 次の重積分を極座標変換にて求めよ。また、積分の領域を図示せよ。 1、∬D(-x^2-y^2+1)dxdy, D={(x,y)|x^2+y^2<=1} 2、∬D(1/(x^2+y^2+2))dxdy, D={(x,y)|x^2+y^2<=1,x>=0,y>=0} お手数ですが、回答と積分領域の図をお願いいたします。

  • 重積分の変数変換がわかりません

    今、重積分の勉強をしていて ∬(x+y)^4dxdy D:{(x,y)|x^2+2xy+2y^2≦1} の問題で行き詰まりました。 適当な変数変換をして積分する問題なんですが、 どんな数で変数変換すればいいかわかりません。 わかる方、教えてください!