• 締切済み

内心の位置ベクトル

△ABCにおいて、AB=2、BC=4、CA=3とします。 ベクトルb、cをb=AB,c=ACによって定めます。 (1)ベクトルbとcの内積は? (2)以下△ABCの内申をDとします。 内申Dが∠Aの二等分線上にあることから、 ベクトルADは(1/2)b+[ア]cの実数倍になります。 このことを用いると AD=[イ]b+[ウ]c(ベクトル)であることが分かります。 (3)内心Dから辺ABにおろした垂線の足をHとします。 このときAH=[エ]bであることが分かります。 (4)△ABCの内接円の半径は[オ]となります。 (1)で手が止まっている状態です…。 解ける方がいらっしゃいましたら、 解説お願いしますm(__)m

みんなの回答

  • 178-tall
  • ベストアンサー率43% (762/1732)
回答No.9

The end. >(4)△ABCの内接円の半径は[オ]となります。 内接円の半径は |DH| のはず。  DH = AD - AH (2) から引用。  AD = (1/3)*b + (2/9)*c (3) から引用。  AH = (1/4)*b また、(1) から、  (b・c) = -3/2 すべてを放り込むと、  DH = AD - AH = (1/12)*b + (2/9)*c  |DH|^2 = (1/12)*b + (2/9)*c ・ (1/12)*b + (2/9)*c  = (1/12)^2*|b|^2 + (1/27)*(b・c) + (2/9)^2*|c|^2  = (1/6)^2 - 1/18 + (2/3)^2  = 15/36  |DH| = (1/6)*√(15) 結局、(1) 以外はダブダブのダブリでした。 蒙御免。   

Naaacham
質問者

お礼

すっきりとした解答が印象的です^^ ありがとうございました*

  • 178-tall
  • ベストアンサー率43% (762/1732)
回答No.8

The 3rd one. >(3)内心Dから辺ABにおろした垂線の足をHとします。 このときAH=[エ]bであることが分かります。 AD と b の内積 (AD・b) = |AD||b|*cos(∠DAH) からひねり出す。 |AH| = |AD|*cos(∠DAH) でしょうから、AH = |AH|*(b/|b|) = {(AD・b)/|b|^2}*b とヤヤッコシい。 (2) から、AD = (1/3)*b + (2/9)*c を、そしてやっと (1) の -3/2 = (b・c) も陽の目を。  (AD・b) = ((1/3)*b + (2/9)*c・b)  = (1/3)*(b・b) + (2/9)*(c・b) = (1/3)*4 - (2/9)*(3/2) = 1  AH = {(AD・b)/|b|^2}*b = (1/4)*b   

  • 178-tall
  • ベストアンサー率43% (762/1732)
回答No.7

Next one. >(2)以下△ABCの内申をDとします。内申Dが∠Aの二等分線上にあることから、ベクトルADは(1/2)b+[ア]cの実数倍になります。このことを用いると AD=[イ]b+[ウ]c(ベクトル)であることが分かります。 ∠Aの二等分線。  AD = s*{(1/2)*b + (1/3)*c }  …(*) これは、  AD = s'*{ b + (2/3)*c } などでも良いのは明らか。(s' = s/2 になるだけのハナシ) ∠Bの二等分線。  BD = t*{-2b + (c-b)} + b = t*(-3*b + c) + b 両二等分線の交点 D は?  s*{(1/2)*b + (1/3)*c} = t*{-3*b + c)} + b  {1 - (1/2)*s - 3*t}*b + {(-1/3)*s + t}*c = 0 b, c は互いに独立らしいから、  (1/2)*s + 3*t = 1  (-1/3)*s + t = 0 として、s = 2/3, t = 4/9 を得る。 これを (*) へ入れて、  AD = (1/3)*b + (2/9)*c   

  • 178-tall
  • ベストアンサー率43% (762/1732)
回答No.6

One by one. >(1)ベクトルbとcの内積は? 直接求めるなら?  9 = (a・a) = (b+c-b)・(b+c-b) = (b・b) + 2*(b・c-b) + (c-b・c-b) = 4 + 2*(b・c-b) + 16  -11 = 2*(b・c-b) = 2*(b・c) + 2*(b・b) = 2*(b・c) + 8  -3 = 2*(b・c)  -3/2 = (b・c)   

回答No.5

(1)余弦定理より cosA=(3^2+2^2-4^2)/(2・3・2)=-1/4 ∴vec(b)・vec(c)=2・3cosA=-3/2(答) (2) ADは辺BCをAB:AC=2:3に内分するので vec(AE)=(3vec(b)+2vec(c))/(2+3)=(6/5){(1/2)vec(b)+(1/3)vec(c)} であり、 vec(AD)=tvec(AE)=(6t/5){(1/2)vec(b)+(1/3)vec(c)} とおける。 [ア]1/3 BDは角Bの二等分線でもあるから、△BAEにおいて AD:DE=BA:BE=AB:(AB/{AB+AC})BC=2:(2/5)4=1:4/5=5:4 一方、AD:DE=t:(1-t)だから t:(1-t)=5:4∴t=5/9 よって、 vec(AD)=(2/3){(1/2)vec(b)+(1/3)vec(c)}=(1/3)vec(b)+(2/9)vec(c) [イ]1/3 [ウ]2/9 ※A(vec(a)),B(vec(b)),C(vec(c))を頂点とする△ABCの内心D(vec(d))の位置ベクトルvec(d)はvec(a),vec(b),vec(c)を用いて vec(d)=(BCvec(a)+CAvec(b)+ABvec(c))/(BC+CA+AB)(知ってて損はないと思います) となることが知られている。この公式を使うと、今の場合vec(a)=vec(0),BC=4,CA=3,AB=2だから、 vec(AD)=vec(d) =(3vec(b)+2vec(c))/9 =(1/3)vec(b)+(2/9)vec(c) (3)vec(AH)=kvec(b)とおく。 vec(DH)=vec(AD)-vec(AH) =(1/3-k)vec(b)+(2/9)vec(c) これとvec(AB)=vec(b)の内積をとると、vec(b)・vec(b)=4,vec(b)・vec(c)=-3/2であるから、 vec(AB)⊥vec(DH) ⇔0=vec(AB)・vec(DH) =(1/3-k)4+(2/9)(-3/2) =4/3-4k-1/3=1-4k ∴k=1/4 よって vec(AH)=(1/4)vec(b) [エ]1/4 vec(DH)=vec(AD)-vec(AH) =(1/12)vec(b)+(2/9)vec(c) =(1/144)|vec(b)|^2+(1/27)vec(b)・vec(c)+(4/81)|vec(c)|^2 =(1/144)4+(1/27)(-3/2)+(4/81)9=1/36-1/18+4/9=(1-2+16)/36=15/6^2 ∴DH=√(15)/6(オ)

  • suko22
  • ベストアンサー率69% (325/469)
回答No.4

#1です。すみません。しょっぱなから計算ミスしてました。訂正版です。 ベクトル記号省略します。 (1)b・c=|b||c|cosA=2*3cosA  cosAは余弦定理で求めます。  4^2=2^2+3^2-2*2*3cosAより、cosA=1/4←ココ!-1/4の間違いです。  よって、b・c=6*(1/4)=3/2←ここ!1/4→-1/4なので、計算結果は-3/2です。 (2)直線ADと線分BCとの交点をEとします。  角の二等分線の公式からAB:AC=BE:EC=2:3  内分の公式より、AE=3/5AB+2/5AC  点A,D,Eは一直線上にあるから、実数kを用いてAD=kAEとあらわせる。  ∠Bの二等分線と線分ACとの交点をFとすると、角の二等分の公式より、  BA:BC=AF:FC=2:4=1:2  よって、AF=1/3AC  ところで、AD=k(3/5AB+2/5AC)=3k/5AB+2k/5AC=3k/5AB+(2k/5)*3*1/3AC         =3k/5AB+6k/5AF  点Dは線分BF上の点だから、3k/5+6k/5=1が成り立つ。  これを解くと、k=5/9    よって、AD=3/5*5/9AB+2/5*5/9AC=1/3AB+2/9AC ----------- 追加) あと、 >ベクトルADは(1/2)b+[ア]cの実数倍になります。 ここですね。無視してしまいましたけど、ここは最初にアを埋めることを考えるより、先にADを出してから逆に考えるほうがいいと思って、飛ばしましたが、そのまま回答では飛ばしたままになってしまいました。 それで、どうするかというと、 AD=1/3AB+2/9ACと求まりましたので、 実数sを用いて、 s(1/2AB+アAC)=1/3AB+2/9ACとなります。 ABとACは一次独立なので、s/2=1/3、アs=2/9より、s=2/3、ア=(2/9)/(2/3)=1/3 ------------------- (3)実数tを用いてAH=tAB  DH=AD-AH=1/3AB+2/9AC-tAB=(1/3-t)AB+2/9AC  AH⊥DHより、AH・DH=0  AH・DH=tAB・{(1/3-t)AB+2/9AC}=(t/3-t^2)*2^2+2t/9*(3/2)←ココ!(3/2)ではなく(-3/2)です。 ↓ここから       =4t/3-4t^2+t/3=0  4t-12t^2+t=0  12t^2-5t=0  t(12t-5)=0  t>0より、t=5/12  ∴AH=5/12AB ↑ここまでも全部訂正してください。訂正した値で計算すると、t=1/4となりAH=1/4ABです。 (4)内接円の半径は|DH|の大きさに等しい。  |DH|^2=(-1/12AB+2/9AC)・(-1/12AB+2/9AC)=11/36 ←ココ!t=1/4と訂正すると、ABの前の係数が1/12になります。これで計算すると|DH|^2=15/36となり、下記の答えになります。  ∴|DH|=√15/6 AB=b、AC=cにそれぞれ置き換えてください。 最初の計算でミスすると受験ではとんでもないことになることがありますのでご注意を。(←自戒の念を込めつつ、あなたにアドバイスします<(_ _)>)

Naaacham
質問者

お礼

小さいな間違いが命取りですね… 戒めも含めてありがとうございます^^*

  • yyssaa
  • ベストアンサー率50% (747/1465)
回答No.3

>ベクトルを↑、内積を↑・↑で表します。 (1)ベクトルbとcの内積は? >↑b・↑c=|↑b|*|↑c|cos∠A 余弦定理から 4^2=2^2+3^2-2*2*3cos∠A、cos∠A=-1/4 よって、↑b・↑c=2*3*(-1/4)=-3/2・・・答え (2)以下△ABCの内申をDとします。 内申Dが∠Aの二等分線上にあることから、 ベクトルADは(1/2)b+[ア]cの実数倍になります。 このことを用いると AD=[イ]b+[ウ]c(ベクトル)であることが分かります。 >ABの中点(Eとする)を通りACに平行な直線と、AとDを 通る直線との交点をFとすると、∠EAF=∠EFAから△AEF は二等辺三角形となり、AE=EF。↑AF=↑AE+↑EF、 ↑AE=(1/2)↑bだから、その大きさは(1/2)*AB=1 ↑EFは↑ACと平行で大きさが1だから、↑EF=(1/3)↑c よって、↑AF=↑AE+↑EF=(1/2)↑b+(1/3)↑c ↑ADと↑AFは大きさだけが違うので、↑ADは↑AFの実数倍、 すなわち↑ADは(1/2)↑b+(1/3)↑cの実数倍になり、 よって、[ア]=1/3・・・答え 同様に、Dは∠Bの二等分線上にあることから ↑BDは(-1/2)↑b+(1/4)↑BCの実数倍になります。 ここで↑BD=↑AD-↑b、↑BC=↑c-↑bなので、 (↑AD-↑b)は(-1/2)↑b+(1/4)(↑c-↑b) =(-3/4)↑b+(1/4)↑cの実数倍になり、sを実定数として ↑AD-↑b=s{(-3/4)↑b+(1/4)↑c}、すなわち ↑AD=(1-3s/4)↑b+(s/4)↑cとなります。 上で求めた↑ADは(1/2)↑b+(1/3)↑cの実数倍は、tを実定数 として↑AD=(t/2)↑b+(t/3)↑c。両式の↑bと↑cの 係数を比較すると、1-3s/4=t/2、s/4=t/3が得られ、これを 連立で解いて、s=8/9、t=2/3。よって ↑AD=(1/3)↑b+(2/9)↑cから[イ]=1/3、[ウ]=2/9・・・答え (3)内心Dから辺ABにおろした垂線の足をHとします。 このときAH=[エ]bであることが分かります。 >|↑AD|^2=↑AD・↑AD ={(1/3)↑b+(2/9)↑c}・{(1/3)↑b+(2/9)↑c} =(1/3)^2(↑b・↑b)+(1/3)*(2/9)↑b・↑c +(2/9)*(1/3)↑c・↑b+(2/9)^2↑c・↑c =(1/9)(↑b・↑b)+(2/27)↑b・↑c +(2/27)↑c・↑b +(4/81)↑c・↑c ここで↑b・↑b=|↑b|^2=4、↑c・↑c=|↑c|^2=9 ↑b・↑c =↑c・↑b=-3/2だから |↑AD|^2=(1/9)*4+(4/27)*(-3/2)+(4/81)*9=2/3 ∠A=θとすると、|↑AH|=|↑AD|cos(θ/2) cos^2(θ/2)=(1+cosθ)/2、cosθ=cos∠A=-1/4だから cos^2(θ/2)=(1-1/4)/2=3/8、よって |↑AH|=|↑AD|cos(θ/2)=√(2/3)√(3/8)=√(1/4)=1/2 |↑b|=2なので、↑AH=(1/4)↑bとなり、よって [エ]=1/4・・・答え (4)△ABCの内接円の半径は[オ]となります。 >△ABCの内接円の半径=DH =√(AD^2-AH^2)=√{(2/3)-(1/2)^2}=√(5/12)=(√15)/6 [オ]=(√15)/6・・・答え

  • ferien
  • ベストアンサー率64% (697/1085)
回答No.2

>△ABCにおいて、AB=2、BC=4、CA=3とします。 > ベクトルb、cをb=AB,c=ACによって定めます。 >(1)ベクトルbとcの内積は? 余弦定理より、 cosA=(AB^2+AC^2ーBC^2)/2・AB・AC =(2^2+3^2-4^2)/2・2・3=-3/12=-1/4 b・c=|b||c|cosA=2×3×(-1/4)=-3/2 >(2)以下△ABCの内心をDとします。 > 内心Dが∠Aの二等分線上にあることから、 > ベクトルADは(1/2)b+[ア]cの実数倍になります。 ここの部分の、問題の入力が違っていると思いますが。。 > このことを用いると > AD=[イ]b+[ウ]c(ベクトル)であることが分かります。 ∠Aの二等分線ADとBCとの交点をEとすると、角の二等分線の性質より、 BE:EC=AB:AC=2:3 よって、AE=(3/5)AB+(2/5)AC=(3/5)b+(2/5)c ……アは2/5 A,D,Eは一直線上にあるので、AD=kAEとおけるから、 AD=k{(3/5)b+(2/5)c}=(3/5)k・b+(2/5)k・c ……(1) ∠Cの二等分線CDとABとの交点をFとすると、同様にして、 AF:FB=CA:CB=3:4 よって、 CF=(4/7)CA+(3/7)CB=-(4/7)AC+(3/7)(AB-AC)=(3/7)bーc C,D,Fは一直線上にあるから、CD=mCFとおけるから、 CD=m{(3/7)bーc}=(3/7)m・bーm・c AD-AC=(3/7)m・bーm・c AD=(3/7)m・b+(1-m)・c ……(2) (1)(2)より係数比較して、 (3/5)k=(3/7)m,(2/5)k=1-m を連立方程式で解くと k=5/9,m=7/9 (1)か(2)に代入して、 よって、AD=(1/3)b+(2/9)c ……イは1/3,ウは2/9 >(3)内心Dから辺ABにおろした垂線の足をHとします。 > このときAH=[エ]bであることが分かります。 内心DからBC,CAへおろした垂線の足をI,Jとする。 内心の性質より、 AH=AJ=xとおくと、BH=BI=2-x,CI=CJ=3-xとなるから、 BC=BI+CI=(2-x)+(3-x)=4 2x=1より、x=1/2だから、AH=1/2 AH:AB=1/2:2=1:4 よって、AH=(1/4)AB=(1/4)b ……エは1/4 >(4)△ABCの内接円の半径は[オ]となります。 内接円の半径をrとすると、 △ABCの面積=(1/2)・2・r+(1/2)・3・r+(1/2)・4・r=(9/2)r sin^2A=1-(-1/4)^2=15/16より、sinA=√15/4より、 △ABCの面積=(1/2)・AB・AC・sinA =(1/2)・2・3・(√15/4)=3√15/4 (9/2)r=3√15/4とおけるから、 よって、r=√15/6 ……オ 図を描いて考えてみてください。 間違っているところがあったら、教えてください。

  • suko22
  • ベストアンサー率69% (325/469)
回答No.1

ベクトル記号省略します。 (1)b・c=|b||c|cosA=2*3cosA  cosAは余弦定理で求めます。  4^2=2^2+3^2-2*2*3cosAより、cosA=1/4  よって、b・c=6*(1/4)=3/2 (2)直線ADと線分BCとの交点をEとします。  角の二等分線の公式からAB:AC=BE:EC=2:3  内分の公式より、AE=3/5AB+2/5AC  点A,D,Eは一直線上にあるから、実数kを用いてAD=kAEとあらわせる。  ∠Bの二等分線と線分ACとの交点をFとすると、角の二等分の公式より、  BA:BC=AF:FC=2:4=1:2  よって、AF=1/3AC  ところで、AD=k(3/5AB+2/5AC)=3k/5AB+2k/5AC=3k/5AB+(2k/5)*3*1/3AC         =3k/5AB+6k/5AF  点Dは線分BF上の点だから、3k/5+6k/5=1が成り立つ。  これを解くと、k=5/9    よって、AD=3/5*5/9AB+2/5*5/9AC=1/3AB+2/9AC (3)実数tを用いてAH=tAB  DH=AD-AH=1/3AB+2/9AC-tAB=(1/3-t)AB+2/9AC  AH⊥DHより、AH・DH=0  AH・DH=tAB・{(1/3-t)AB+2/9AC}=(t/3-t^2)*2^2+2t/9*(3/2)       =4t/3-4t^2+t/3=0  4t-12t^2+t=0  12t^2-5t=0  t(12t-5)=0  t>0より、t=5/12  ∴AH=5/12AB (4)内接円の半径は|DH|の大きさに等しい。  |DH|^2=(-1/12AB+2/9AC)・(-1/12AB+2/9AC)=11/36   ∴|DH|=√15/6 AB=b、AC=cにそれぞれ置き換えてください。

関連するQ&A

専門家に質問してみよう