• ベストアンサー
  • 暇なときにでも

任意のkに対し、f(m)がk個の素因数を持つ様なm

f(x)を整数係数のmonic polynomialとしたとき 任意の整数kに対して、f(m)がk個の異なる素因数をもつような整数mは存在するか という問題なのですが、 素数を小さい順にp_1 ,p_2, p_3, ...とし、 f(m)の素因数がp_1, p_2, ... , p_kとなるようなmが存在することを示す。 f(x)は問題文の条件より f(x)=(x-a_1)(x-a_2)....(x-a_n)とおける (a_iは整数) p_iは素数なので互いに素 中国の剰余定理より y≡a_1 (mod p_1) y≡a_2 (mod p_2) y≡a_3 (mod p_3) ... y≡a_k (mod p_k) を満たすyが存在する。 y-a_1≡0 (mod p_1) y-a_2≡0 (mod p_2) y-a_3≡0(mod p_3) ... y-a_k≡0(mod p_k) となるためf(y)はp_1, p_2, ..., p_kのすべてで割り切れる。 間違いがあったら指摘ください。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数66
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

題意も証明方針も今一つピンとこないのだけれど、 任意の整係数モニック多項式が 整係数一次式の積に分解する…という主張は 明らかに間違い。よって、その証明は正しくない。 反例: x^2 + 2 とか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。一次式には確かに分解できないですね。。。考え直して再度質問します

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「k個の異なる素因数をもつ」というのは「ちょうど k個」という意味でしょうか, それとも「少なくとも k個」という意味でしょうか? 「f(x)=(x-a_1)(x-a_2)....(x-a_n)とおける (a_iは整数)」のところがわかりません.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 連続したn個の整数の積

    ひき続いたn個の整数の積のなかには、nの倍数が含まれることがわからないので質問します。問題は、 整数a,bを係数とする2次式f(x)=x^2+ax+bを考える。f(α)=0となるような有理数αが存在するとき、以下のことを証明せよ。 (1)αは整数である。(2)任意の整数lと任意の自然数nに対して、n個の整数f(l),f(l+1),・・・,f(l+n-1)のうち少なくとも1つはnで割り切れる。 (1)α=m/n(m,nは互いに素な整数)とおくと条件より (m/n)^2+a(m/n)+b=0, m^2/n=-(am+bn) m^2はnで割り切れるが,m,nは互いに素だから n=±1しかない。ゆえにα=±mとなり、αは整数である。 (2)f(α)=0だから、f(x)=x^2+ax+b=0となる2次方程式は、x=αなる解をもつ。ほかの解をβとすれば、解と係数の関係からα+β=-a,β=-a-αよりβも整数である。ゆえにf(x)はこの2整数α,βを用いて、f(x)=(x-α)(x-β)と因数分解できる。したがってf(l)=(l-α)(l-β)となりf(l)はl-αで割り切れる。同様に、 f(l+1)はl+1-α で f(l+2)はl+2-α   ・・・ f(l+n-1)はl+n-1-α で割り切れる。 ゆえにf(l)f(l+1)f(l+2)・・・f(l+n-1)はそれらの積 (l-α)(l+1-α)(l+2-α)・・・(l+n-1-α)= (l-α)(l-α+1)(l-α+2)・・・(l-α+n-1)で割り切れる。 ここがわからないところです。 l-αからはじまる引き続いたn個の整数の積だから、どこかにnの倍数がある。 自分はl-α=-3 n=4で計算をしたら、 -3,-2,-1,0 となり0が4で割り切れるのかと疑問に思ったり、 他の数を代入して計算してみても、ひき続いたn個の整数の積のなかには、nの倍数が含まれることが実感できませんでした。 解答の続きは、よってn個の整数f(l),f(l+1),・・・,f(l+n-1)のうち少なくとも1つはnで割り切れる。でした。 どなたか、ひき続いたn個の整数の積のなかには、nの倍数が含まれることを証明してください。お願いします。

  • 素数は無限に多く存在することの証明(ユークリッドの別証)を二つの添削

    ユークリッドの証明は背理法を用いた証明。 素数を有限個とするならその最大素数をpnとして素数を小さい順にp1,p2,…,pnとした時 N=p1*p2*p3*…pn + 1 全ての自然数は素因数に分解できるのでp1~pnの少なくとも一つ因数に持つはずだが、どれで割っても1あまる。これはpnが最大の素数であることに矛盾 素数は無限に存在する。 といった証明。今回はこれの別称として以下の漸化式を用いたものを解けという問題です。 ◆a_{n}:=2^(2^n) + 1, n=1,2,3,… を用いた証明 この時任意のm≠nに対しa_{m}, a_{n}は互いに素である。実際n>mの時 a_{n} - 2 = 2^(2^n) - 1     ={2^2^(n-1) + 1}{2^2^(n-1) - 1}     =a_{n-1}*(a_{n-1} - 2)     =a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 2) となるのでa_{m},a_{n}の公約数dは2の約数でなければならない。他方a_{m},a_{n}は奇数であるから(←漸化式より)d=1となる。すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ ◆正整数の列a_nを次のように定める a_{n+1} = a_{n}*(a_{n} - 1) + 1, a_{1} = 2 これを用いて素数が無限であることを示すのですが 任意のm≠nに対して a_{n} - 1 = a_{n-1}*(a_{n-1} - 1)       = a_{n-1}*a_{n-2}*(a_{n-2} - 1)       = a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 1) よりa_{n},a_{m}の公約数は1の約数でなければならない。よってa_{n},a_{m}は互いに素である。 すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ これら2つの証明はこれであっているでしょうか?

  • 素因数分解の問題

    久々に素因数分解の問題を解いてみようとしたところ、いきなり躓いてしまいました。 二桁の整数nに168をかけると、ある数の二乗になりました。この整数nはいくらになるかという問題です。 168を素因数分解し、n×168=n×2^3×3×7となることは分かります。 これから先、どのように組み立てて解けばよいのか分かりません。 解説では、各素数が偶数個になるように解くと書かれており、ある数の二乗になるため、 n=2×3×7×m^2となっていました。 どうしてこのような式なるのですか? A=A^p×b^q×c^rとなっている時、各指数がすべて偶数(2の倍数)なっていれば、Aは何かの二乗になることは確かめてみました。

  • P(x)が任意の素数pでわれるようなnの求め方

    多項式P(x)の係数が全て整数で、最大次数の係数は1として、 任意の素数pでP(n)が割りきれるようなnは全てのpで求められるのでしょうか? (もとめられなくても任意の素数pに対してnが必ず存在することが示せればいいです) 僕が考えたのは p以下の自然数は全てpに互いに素なので、 P(x)に0以上p-1以下の自然数をおのおの代入してpで割ったときの余りが全て異なるとすると、 nは全てのpにおいて存在するとできるかなとおもったのですが、余りはこの場合異ならないのでしょうか? ことなるとしたらどう説明できますか? 回答よろしくお願いします

  • 解説でわからないところがあります

    aとbが互いに素であるとき、 a^2とb^2が互いに素であることを証明せよ なんですが a^2とb^2の最大公約数をGとおくと、 a^2=αG…(1) b^2=βG…(2) (αとβは互いに素)とおける。 Gの任意の素因数の1つをkとすると。(1)式よりa^2はkで割り切れる。kは素数より、aもkで割り切れる。同様に(2)式からbもkで割り切れる。条件よりaとbは互いに素であるから、k=1である。kはGの任意の素因数であるから、G=1となる。よって、a^2とb^2は互いに素である。 kはGの任意の素因数であるから、G=1となる。 というのがわかりません また a^2とb^2の最大公約数をGとおくと、 a^2=αG…(1) b^2=βG…(2) (αとβは互いに素)とおける。 Gの任意の素因数の1つをkとすると。(1)式よりa^2はkで割り切れる。kは素数より、aもkで割り切れる。同様に(2)式からbもkで割り切れる。条件よりaとbは互いに素であるから矛盾する よって aとbが互いに素であるとき、 a^2とb^2が互いに素であることが成り立つ という証明ではだめでしょうか だめならどうしてか教えてほしいです

  • modを使用した平方根の求め方

    解き方が解からない問題があります。 どれだけ考えても解き方がわからないので、どなたかわかる方教えてください。 【解き方が解からない問題】 大きな素数の積n=pqが与えられた時、nを素因数分解するのは非常に難しい。 整数mと整数y(<m)が与えられた時y=x2(xの二乗) mod mなる整数解xが存在すれば、yは mod mで平方剰余であるという。 xを mod mでのyの平方根という。 mが素数7の時、 12(1の二乗の事です。二乗の書き方がわからなくて・・・)≡1 (mod 7) 、 22(2の二乗) ≡ 4 (mod 7) 32(3の二乗)≡2 (mod 7) 、 42(4の二乗) ≡ 2 (mod 7) 52(5の二乗)≡4 (mod 7) 、 62(6の二乗) ≡ 1 (mod 7) となるので、1、2、4が平方剰余で、各平方剰余には2個の平方根がある。 mが二つの素数の積の場合、4個の平方根がある。 ここまでが参考書に載ってる説明です。 ここから私がわからない問題です。 102(10の二乗) mod 77=23 n = 77 の素因数7と11から素因数の知識を利用してZのmod nでの平方根Sを計算する。 S2(Sの二乗) ≡ 23 mod 7 S2(Sの二乗) ≡ 23 mod 11 上の2つを解いて、mod 77での4つの平方根10、32、45、67を得る。 この2つの式から、何をどうやって計算して、4つの平方根10、32、45、67が導き出せたのかわかりません。 二乗の表記の仕方がわからず、とても見難くなってしまいました。すみません。 乱文になってしまいましたが、どなたかわかる方教えてください。 よろしくお願いします。

  • 素数の分類に関して

    前回質問させていただいた証明に関することなのですが、最後の一文が分からないためもう一度質問させていただきます。 [類題] 「8n + 3 型の素数は無限に多くある事を示せ。」の略解。 *)文中のp^は複素数pの共役な複素数です。例えば、p=1+iの場合、p^は1-iのことです。 また、a2 はaの二乗という意味です。  証明)もし 8n + 3 型の素数が有限個であったとし、その全体を p1, p2, ... , pn とする。 P = p1p2 ... pn + √2 i と置いて、これを単項イデアル整域 Z[√2 i ] で素元分解する。 N (P) = PP^ は奇数であるから(正確には、 N (P) ≡ 3 ( mod. 8 ) 、) P の有理整数の素因数は奇数である。この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。又、 P は有理整数に同伴でないから、a + b √2 i 型 (b ≠ 0, 有理整数の素因子と同伴でない物) の因子がある。PP^ は奇数であるから a は奇数である。更に、この a + b √2 i 型の因子の b が偶数であるとすると、 N( a + b √2 i ) = a2 + 2b2 ≡ 1 (mod. 8) であるから、 この形の b が全て偶数であるとすると PP^ ≡ 3 (mod. 8) と矛盾する。従って b が奇数の物 a + b √2 i が有るが、素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。故にこの型の素数は無限個。 素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。 における a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8)となった場合なぜ有限性に矛盾していると言えるのでしょうか。 a2+2b2が素数でないならば矛盾はしてないのでしょうか。 よろしくお願いします。

  • 素数が無限個存在すること(エルデシュによる証明)

    素数が無限個存在することの証明について、 素数―wikipedia―によれば、エルデシュによる素数の逆数和の 発散性の証明は、素数が無限個存在することの証明にもなっているらしいです。 (証明において、素数が無限個存在することを用いていないため・・・?) http://ja.wikipedia.org/wiki/%E7%B4%A0%E6%95%B0 その証明は、 背理法による。 n 番目の素数を pn とする。 素数の逆数和が収束すると仮定すると、 任意の ε > 0 に対してある自然数 N が存在して、 1/pN+1 + 1/pN+2 + 1/pN+3 + ... < ε となる。 ★ いま、 ε = 1/2 としよう。任意の自然数 n に対して ・・・・・・・・ と説明されているのですが、 ★マークの部分がよくわかりません。 素数が無限個存在することを使用しているのでは!? もし有限なら、はるかに小さいεがとれないのではないでしょうか? どうかご教授ください。

  • 素数の分類に関して

    [類題] 「8n + 3 型の素数は無限に多くある事を示せ。」の略解。 *)文中のp^は複素数pの共役な複素数です。例えば、p=1+iの場合、p^は1-iのことです。 また、a2 はaの二乗という意味です。  証明)もし 8n + 3 型の素数が有限個であったとし、その全体を p1, p2, ... , pn とする。 P = p1p2 ... pn + √2 i と置いて、これを単項イデアル整域 Z[√2 i ] で素元分解する。 N (P) = PP^ は奇数であるから(正確には、 N (P) ≡ 3 ( mod. 8 ) 、) P の有理整数の素因数は奇数である。この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。又、 P は有理整数に同伴でないから、a + b √2 i 型 (b ≠ 0, 有理整数の素因子と同伴でない物) の因子がある。PP^ は奇数であるから a は奇数である。更に、この a + b √2 i 型の因子の b が偶数であるとすると、 N( a + b √2 i ) = a2 + 2b2 ≡ 1 (mod. 8) であるから、 この形の b が全て偶数であるとすると PP^ ≡ 3 (mod. 8) と矛盾する。従って b が奇数の物 a + b √2 i が有るが、素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。故にこの型の素数は無限個。 この証明における、この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。がなぜ言えるのかという点と 最後の一文である 素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。 における a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8)がなぜ分かるのかが理解できません。 よろしくお願いします。

  • 以下の(1)、(2)を用いて、背理法により素数が無限個存在

    以下の(1)、(2)を用いて、背理法により素数が無限個存在することを示せ。 (1)正の実数rについて、無限級数Σ_[k=1]^[∞] 1/(k^r)はr>1のとき収束する。 (2)mを正の整数、p_1, p_2, ..., p_mを相異なる素数とし、Λ={(k_1, k_2, ..., k_m)|k_i∈Z, k_i≧0, 1≦i≦m}とする。このとき、無限級数Σ_[(k_1, k_2, ..., k_m)∈Λ] 1/[(p_1^(k_1)) (p_2^(k_2))... (p_m^(k_m))]は収束する。 この問題の解き方がわかりません。教えて下さいませんか。