• ベストアンサー

総和の質問です。

X1,X2,X3...Xnを実数とし、(nは1以上の整数) (文字化けするかもしれません) Σ[i=1~n]Σ[j=1~n] | Xi+Xj | をX1以外を固定してとくと 2|X1|+Σ[j=1~n] ( |X1| ± Xj) +C(定数) となると書いてあるのですが 2|X1|+ 2Σ[j=1~n] |X1 ± Xj | +C ではないのでしょうか?  回答よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • FT56F001
  • ベストアンサー率59% (355/599)
回答No.1

>2|X1|+Σ[j=1~n] ( |X1| ± Xj) +C(定数) >となると書いてあるのですが >2|X1|+ 2Σ[j=1~n] |X1 ± Xj | +C ではなくて, 2|X1|+ 2Σ[j=2~n] |X1 + Xj | +C になります。 X1を含む項は, 2|X1|+Σ[j=2~n]|X1+Xj|+Σ[i=2~n]|Xi+X1| =2|X1|+2Σ[j=2~n]|X1+Xj| ですね。 |-2+5|≠|-2|±5なので,|X1+Xj|は( |X1| ± Xj)の形には変形できません。 |X1 ± Xj |と書いて,プラスマイナスはどちらか正しい方をとる, でもいいですが,結局は足し算の方なので,|X1+Xj|としか表せない。

nemuine8
質問者

補足

そうですよね どう考えても|X+Y|=|X|±Yの変形はおかしいですよね

関連するQ&A

  • 数学の質問です。

    n=5,6の場合に次の2条件を満たす数列 X1<X2<...<Xn をすべて求めよ。 条件 1)Xi+X(n-i+1)=Xn 2)X(j-i)≦Xi-Xj≦X(j-i+1) どうやってやったらいいのかが全然わかりません。

  • 結合法則

    M:空でない集合 φ:M×M→M φ(φ(x,y),z)=φ(x,φ(y,z)) (∀x,y,z∈M)…☆ が成立しているとする。 X1,…,Xn∈Mが与えられたとき、Xi,X(i+1)に対しφを作用させる。次にn-1個の元X1,…,X(i-1),φ(Xi,X(i+1)),X(i+2),…,Xnを改めてY1,…,Y(n-1)と記し、またYj,Y(j+1)に対しφを作用させる。この操作を繰り返し最後に残った元をZとする。 このとき、X1,…,Xnに対しZを対応させる写像ψn:M^n→Mはφを作用させる場所によらず(つまりiやjなどによらず)well-definedである。 以上のことを証明してみたのですがあっているかどうかわからないので、教えて下さい。 (証明) nに関する帰納法で示す。 n=2…明らか n=3…☆により明らか。 ψ(n-1)までがwell-definedであると仮定する。 ψnがwell-definedであることを示すには ψ(n-1)(φ(X1,X2),X3,…,Xn)=…=ψ(n-1)(X1,…,X(n-2),φ(X(n-1),Xn)) (∀Xi∈M,i=1,…n)をいえばよい。 ψ(n-1)(X1,…,X(j-1),φ(Xj,X(j+1)),X(j+2),…,Xn)とψ(n-1)(X1,…,Xj,φ(X(j+1),X(j+2)),X(j+3),…,Xn)が等しいことをいえばOK。(j=1,…,n-2) ψ(n-1)のwell-defined性より ψ(n-1)(X1,…,X(j-1),φ(Xj,X(j+1)),X(j+2),…,Xn)=ψ(n-2)(X1,…,X(j-1),φ(φ(Xj,X(j+1)),X(j+2)),X(j+3),…,Xn)…(1) ψ(n-1)(X1,…,Xj,φ(X(j+1),X(j+2)),X(j+3),…,Xn)=ψ(n-2)(X1,…,X(j-1),φ(Xj,φ(X(j+1),X(j+2))),X(j+3),…,Xn)…(2) ☆より(1)=(2)がわかるから ψ(n-1)(X1,…,X(j-1),φ(Xj,X(j+1)),X(j+2),…,Xn)とψ(n-1)(X1,…,Xj,φ(X(j+1),X(j+2)),X(j+3),…,Xn)が等しい。 したがってψnはwell-definedである。

  • こんな関数は存在する?存在しない?

    とある理由で、以下のような問題を考えています。 しかしながら、どう証明(or反例)してよいのかいいアイディア が浮かばず、質問させていただきました。 -------------------------------------- 問い: ある関数f(x1,x2)が存在したとします。 この時下記条件を満足する関数g(x1,x2,...,xn)が存在できるか。 条件: まず、任意のiとj(j≠i)を選びます。 {xk}(k≠i,j)に対して任意の定数値{ck}を設定します。 こうして生成されたh(xi,xj)=g(c1,...,xi,...,xj,...,cn)を考えます。 この関数hがh(xi,xj) = a*f(xi,xj)を常に満足する。 ここでaは0以外の定数。 ------------------------------------- 一般的に証明するのは難しそうなので、g(x1,x2,x3)の場合などでもかまいません。 また、f(x1,x2)に対して拘束条件f(x1,x2)=f(x2,x1)をかけてもかまいません。 なにか「こういうアプローチで証明(or反例)できるのではないか?」といったアイディアをお持ちではないでしょうか? ------------------------------------------- ちなみにこの問題は量子力学のN-representability問題に端を発しています。もしこの証明ができれば、N-representability問題に対してすこし切り込めるかなぁと考えている次第です。 よろしくお願いします。

  • {x1,x2,…,xn}は正規直交系でxがspan{x1,x2,…,xn}に無いならxは直交する?

    [Q] Given a orthonormal set,O:{x1,x2,…,xn},and x is not in spanO,show that x is orthonormal to every vector in O. という定理についてです。 仮定は<xi,xj>=δij (i,j∈{1,2,…,n}) xがspanOの中に無いというのだからx,x1,x2,…,xnは一次独立ですよね。 一次独立だからといってxがOのどの元とも直交するとは言えませんよね。 背理法で∃i∈{1,2,…,n};<x,xi>≠0だと仮定してみると ∥x∥∥xi∥cos∠(x,xi)≠0と書け、、、 からどうやってxがOのどの元とも直交である事を示せばいいのでしょうか?

  • 総和の微分

    Σ(x_n)^2/(x_n + c)を最小にするxの組み合わせを見つけたいので、 xについて微分したいと思い、 x_1...x_nのそれぞれについて偏微分しようと思ったのですが、 偏微分した場合、Σ(x_n)^2/(x_n + c)を最小にするx1...xnの組み合わせを見つけることはできますか? 例えば、x1からx3まである場合、 Σ(x1)^2/(x1 + c) + Σ(x2)^2/(x2 + c) + Σ(x3)^2/(x3 + c)を最小にするx1, x2, x3の組み合わせを見つけたいです。

  • 位相幾何学の問題です。

    R^3 の2次式で定義される曲面 Σ(i,j=1→3) A_ij Xi Xj = c , X = (x1, x2, x3) (A_ij) は3次対称行列、c は定数 を等長なものに分類し、さらにはその曲率を求めなさい という問題なのですが解法がわからずに困っています。 よろしければ解き方を教えていただきませんか? よろしくお願いします。

  • ファンデルモンドの行列式の証明方法

    d/dt|A1(t),A2(t),....,An(t)|=|A1'(t),A2(t),....,An(t)|+ |A1(t),A2'(t),....,An(t)|+..... +|A1(t),A2(t),....,An'(t)| を使って、ファンデルモンドの行列式 |1 x1 x1^2 .... x1^(n-1)| |1 x2 x2^2 .... x2^(n-1)| | . . . . . . . . . . . . . . . . .| | . . . . . . . . . . . . . . . . .| =Π(xj-xi) (1<=i<j<=n) | . . . . . . . . . . . . . . . . .| | 1 xn xn^2 .... xn^(n-1)| を証明するという問題にどなたか回答お願いします。

  • 整数論 合同≡

    「自然数mが奇数とし、xi:=2i(1≦i≦m)とおく。このとき、任意の整数yに対して、y≡xi(mod m)となるようなiがただ一つだけ存在することを証明せよ。」 証明をしたのですが、以下のようでいいのですか? 添削して気づいたことを教えてください。 (証明) y≡xi(mod m)(1≦i≦m) 【1】m=1のとき、y≡x1≡2(mod 1)より、明らかに成立。 【2】m≠1のとき、i≠jとする。   xi≡xj(mod m)と仮定すると   2i≡2j(mod m)    i≡j(mod m)    i≠jよりi≡/j(mod m) (←≡/は合同でない)   従って矛盾よりxi≡/xj(mod m)   今、m子の整数x1,x2,…,xmをmで割った時の余りは全て異なる。   また、整数yをmで割ったときの余りは0,1,…,m-1のm個。    よって任意の整数yに対して、y≡xi(mod m)となるようなiがただ一つだけ存在する。

  • 確率の独立性

    1からnまでの番号カードをランダムに並べる試行にたいする確立空間(W,P)を   W={w=(i1, ...... ,in) : ij∈{1, ...... ,n} (1≦j≦n), ij≠il(j≠l)}    P(w)= 1/n! , ∀w∈W 確率変数 Xj:W→N (1≦j≦n)を  Xj(w)= '数jのカードの右側におかれたjより小さいカードの枚数’と定義する。  この時 (1)P(Xi=k) (k=p, ...... ,j-1) を求める (2) X1, ...... , Xn  が独立かどうか調べる という問題で、 (1)では X1(w)=0であることから P(X1=0)=1 だということは分かるのですが、jもkも変数なのに問題のP(Xi=k)は求められるのでしょうか。 (2)はそれぞれの確率が関係し合っているので、独立でないと思うのですがどうでしょうか? 

  • 数値解析の補間多項式

    (1)nを1以上の整数とし,X0,X1,,,Xnを相異なるn+1個の標本点とする。R上の関数f,g,hにおいて、gはfをX0,X1,,,Xn-1で補間し(つまり,g(Xi)=f(Xi),i=0,1,2,,,,n-1となる)、hはfをX1,,,Xnで補間するとき、関数    g(X)+(X0ーX)/(Xn-X0)×{g(X)ーh(X)} は、fをX0,X1,,,Xnで補間することを示したのですが質問があります。 まず補間するということはどんな意味を持っているのでしょうか?そしてこの問題の但し書きとしてf,g,hは多項式とは限らないとあったのですがではどう考えたらよいのでしょうか?? 最終的にどのように証明していけばよいかアドバイスお願いします★