• 締切済み
  • すぐに回答を!

角度が知りたい

半径r=0.175の円(原点は0,0)と直線y=0.165によって出来る扇形の要部分の角度、もしくはその円と直線で出来た共通部分の小さい方の面積を分かりやすく教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数99
  • ありがとう数2

みんなの回答

  • 回答No.1
  • rei00
  • ベストアンサー率50% (1133/2260)

ご自分で考えた方が勉強になると思いますので,解法のアドバイスだけ。 半径 r = 0.175 の円と直線 y = 0.165 との交点を A, B とし,この直線がY軸と交わる点を C とします。 三角形 AOC は明らかに直角三角形であり,角 AOC = 角 BOC です。 定義より OA = 0.175, OC = 0.165 ですから,角 AOC を x とすると,cos(x) = 0.165/0.175 となります。 これから x の値(角 AOC の値)が求まり,求める扇型の要部分の角度(角 AOB)は 2x と求まります。 角 AOB の値がわかりましたから,(角 AOB)/360 x (円の面積) で扇型部分の面積がわかります。 この面積から,三角形 AOC と三角形 BOC の面積を引けば,求める部分の面積になります。 たぶんあっていると思いますが,いかがでしょうか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。 大変参考になりました。 もうちょっと勉強します。 また教えてくださいね。 それでは・・・。

関連するQ&A

  • 靴屋のナイフ( アルベロス)について

    半径Rで角度が原点から正の方向に90度の扇形があります。 その半径Rの扇形の中心点から、角度90度の半径線方向へ距離d(d<R/4)の位置を点aとします。 点aを中心に、(Rの扇形の角度0での半径の線に接するまで)半径(R-d)の円を描きます 。 Rの扇形の角度0での半径の線に接するまで、半径(R-d)の円を描きます(靴屋のナイフと似たモデルになるはず)。 半径Rの扇型の中心点から任意の角度θ(0<θ<90°)に直線を引いた際、半径Rの扇形と半径(R-d)の円の差Xの求めかたがわかりません。 モデル図が載せれないのでとてもイメージしにくいと思いますがよろしくお願いいたします。

  • 扇形と円の重なった面積

    半径R、Θが0からπ/2の扇形と、半径r0の円の中心がΘ=π/4軸上を移動するとき、 扇形と円の重なったところの面積を求める式がわかりません。 半径r0の円の大きさは扇形に内接する大きさです。 図では実践と点線の円の大きさは異なりますが同じ半径r0の円です。 半径r0の中心は扇形と重なりがなくなるところまで動きます。 扇形の原点から半径r0の円の中心まではrです。 よろしくお願いします。

  • 2つの円錐の共通部分の体積

    【問題】 xyz空間内に点A(-2, 0, 2)とB(2, 0, 2) がある.また,点Pはxy平面上の原点を中心とする半径2の円の周と内部を自由に動く点とする。 線分APの通過する範囲をK,線分BPの通過する範囲をLとするとき,KとLの共通部分の体積を求めよ. 上の問題を解いていたのですが,行き詰ってしまったためどなたか教えていただけませんか.以下,私の解答です.また,表記の都合上,OAベクトルを「OA↑」と書くことにします. 【私の解答(途中まで)】 xy平面上の原点を中心とする半径2の円の周を自由に動く点をQとすると,Q(2cosθ, 2sinθ, 0) (0≦θ≦2π)とおける.線分AQ,BQと平面z=t(0≦t≦2)の交点をそれぞれA',B'とする.A',B'はそれぞれ線分QA,QBをt:(2-t)に内分する点なので, OA'↑=(1/2){(2-t)OQ↑+tOA↑} =((2-t)cosθ-t, (2-t)sinθ, t) 同様に, OB'↑=((2-t)cosθ+t, (2-t)sinθ, t) (cosθ)^2+(sinθ)^2=1より,z=t上におけるA'の軌跡は (x+t)^2+y^2=(2-t)^2 …(1) 同様に,B'の軌跡は (x-t)^2+y^2=(2-t)^2 …(2) 点Pはxy平面上の原点を中心とする半径2の円の周と内部を自由に動くので,KとLの共通部分をz=tで切ってできる断面は(1)と(2)の円の周と内部の共通部分である.そこで,この部分の面積をS(t)とおき求める. (1)と(2)はy軸に関して対称なので,(2)とy軸に囲まれてできる部分の面積の2倍がS(t)である. また,共通部分ができるには,(2)の半径が,中心のx座標以上であればいいので, 2-t≧t⇔t≦1 0≦t≦2と合わせて,0≦t≦1 さて,図(※添付画像)のように点を定め,∠ORS=φとする.このとき,∠OUS=2φ. OR=2,OS=2√(1-t)より,RS=2√(2-t) よって,cosφ=1/√(2-t) …(3) S(t)=2{(扇形STU)-(三角形STU)} =2{(1/2)・(2-t)^2・4φ - (1/2)・(2-t)^2・sin4φ} =4φ/(cosφ)^4+sin4φ/(cosφ)^4 あとは,求める体積をVとすると, V=∫[0→1]S(t)dt ですが,(3)を用いてtからφの積分にする訳ですが,被積分関数が複雑な形になってしまい計算することができません. どこかで計算ミスをしているのでしょうか?それとも,φの置き方がまずかったのでしょうか? どなたか分かる方,どうか教えていただけませんか.よろしくお願いいたします.

  • 角度を求めるには

    (問題) 下の図は、1辺10cmの正方形である。その図形の内側に頂点B、Cを中心とする半 径10cm の円弧を書き、2つの弧の交点Eと頂点Bとを直線で結ぶ。斜線の部分の面積 を求めなさい。ただし、円周率をπとする。 すみません。図は画像で添付しました。 この問題は∠EBCの角度を求めれば解答につながりますが、角度の求め方がわかりません。 解説お願い致します。若しくは違う方法で扇形の面積求まりますか?

  • 某中学入試の数学問題、これで解き方あってますか?

    某中学入試の数学問題、これで解き方あってますか? 昨日、乗った電車の某学習塾の車内広告で某私立中学の入試問題が載ってました。 気になったので解いてみましたが、これで解答あってますでしょうか? 気になる点 1)論理構成X部分を「これでは説明が足りない」と突っ込まれると困るのですが、もうちょっといい説明方法はありますでしょうか? 2)補助線を描いて扇形Aを作成する以外のスマートな解法、ありますでしょうか? 問題 下記のような図形がある。(下記 添付画像の左側) 線Aは大きい円の中心を通る直径線である。 円の中の半円弧は大きい円の半径を直径とする半円弧である。 大きい円の直径は40センチ、半円弧の直径は20センチ(よって半径は10センチ)である。 線Bは大きい円の半径線であり、大きい円の上半分の巴部分の面積を二分している。 角あの角度を求めよ。 私の解答 論理構成 図右のように補助線を追加する。 半円Aと半円Bはともに同じ大きな円の半径を直径としているので、同じ図形である。 よって半円Aと半円Bの面積は同じ。 巴部分の半円A部分を切り取って半円Bに当てはめると巴部分は大きい円の半円となる。 よって巴部分の面積と大きな円の半円の面積は同じ。 半円の面積を二分する分割線を描くとしたら、図のように補助線追加図のように半円を二分する垂直な線となる。 (論理構成X部分)これが、巴になると線Bのように左に傾く線になるのだから、垂直の補助線と線Bでできた扇形Aの面積と半円Aの面積は同じといえる。 よって半円Aの面積を求め、その面積を成すだけの扇形Aの中心角を求め、その中心角を直角から差し引いた角度が角あとなる。 ではそれを求める。 半円Aの面積を求める。 半円Aの半径=10センチ 10 * 10 * 3.14 ÷ 2 = 157(平方センチ) 半円Aと扇形Aの面積は同じなのでこれは扇形の面積でもある。 大きな円の面積を求める 20 * 20 * 3.14 = 1256(平方センチ)  扇形の面積 ÷ 大きな円の面積  157 ÷  1256 = 0.125 = 1/8 扇形Aの面積は大きな円の面積の 1/8  大きな円の中心角は360度であるから扇形Aの中心角は 360 * 1/8 = 45(度) 直角から扇形Aの中心角を引けば角あが求められる。 90 - 45 = 45(度) よって 角あ = 45度 が導かれる。 (電車の中で見た問題図形ではとてもとても角あは45度には見えなかったのだが、おそらく「分度器を当てて、見当をつけてから解答を当てはめこむ」という解法をされないようにあえてアバウトな図にしていたのではないか? と推測されます。実際、私が描いた角度と同じぐらいに設定されていました)

  • 円と線で囲まれた部分の面積

    久しく数学から離れていて忘れてしまったのですが 円の上を線が横切っていて、それで囲まれた部分の面積を求めたいのです。うまく説明できないですが積分で計算できた気がするのですが…(自信は全くありません) 例えばy=2x+3の直線が原点を中心にした半径12の円を切りとる面積をどうやって求めればいいでしょう?

  • 円を直線で切り取った部分の面積の求め方。

    積分の知識を失って早や数年、どなたか以下の面積の求め方を教えてください。 円:原点Oを中心とする、半径aの円 直線:X=k(-a<=k<=a) この直線によって切り取られる円の左側の面積Sをkであらわしたいんです。 よろしくお願いいたします。

  • 三角関数の問題

    半径2の円Oと、円Oのそとに中心を もつ半径√2の円O´が二点A、Bで交わり、 ∠AOB=π/3、∠AO´B=π/2である。 二つの円に共通な部分の面積Sを求めよという問題なんですが、 S=扇形のOAB+扇形のO´AB-△OAB-△O´ABですよね? しかし扇形の面積は分かるのですが 私には△OABとO´ABのもとめかたがわかりません>< どなたか教えてください;;

  • 正三角形と3個の円の問題

    一辺の長さが√2 の正三角形の各頂点を中心に半径 1の円をそれぞれ描くとき,3 個の円の 共通部分の面積を求めよ。 という問題です。 以前には、円の半径が三角形の辺と同じ長さの問題をやったことがありますが、この問題は やってみたら全くできませんでした。 どなた分かる方、ご教授お願いします。

  • n本の円柱の共通部分の体積

    nを2以上の整数とし, xyz空間においてn本の直線L_1,L_2,…,L_nを次のように定める. L_k:xcos(kπ/n)+ysin(kπ/n)=0,z=0 (k=1,2,…,n) このn本の直線L_1,L_2,…,L_nを中心軸とする半径a(a>0)のn個の円柱について, その内部の共通部分の体積をV_nとする. V_nを求めよ. という問題です。 とりあえず、z=t(-a<t<a)での切り口の面積S(t)を求めたいです。そうすればV_n=∫[-a,a]S(t)dtで求められるので。 L_1,L_2,…,L_nがxy平面を2n等分するような原点を通るn本の直線だということは分かりましたが、具体的に切り口がどのような図形でS(t)がどうなるかが分かりません。どなたか教えてください。 ちなみに答えはV_n=(8/3)(a^3)ntan{π/(2n)}です。