• ベストアンサー

整式の決定

noname#108554の回答

  • ベストアンサー
noname#108554
noname#108554
回答No.1

「整式決定」と言う時点で有限次なのは確定しているので やはり次数を求めておくと後々(解きはじめてから10分後とか)便利か・・・と。 しかし、現実的には整式だと分かっているときはそうそうないので 後々(今から10年後とか)の微分方程式/積分方程式を見据えれば [my answer]的な解答でもいいか・・・と。 結論としてどうでもいいと思います。 解きやすいほうで。

ONEONE
質問者

お礼

ありがとうございました。 >後々(解きはじめてから10分後とか) >後々(今から10年後とか) なんかおもしろかったです。

ONEONE
質問者

補足

ありがとうございます。 ちょっと訂正でなぜか「C=0」と書いてしまっている。 C=1でしたね。

関連するQ&A

  • 整式

    整式f(x)を(x-1)^2で割った時の余りは8x-4,(x-2)^2で割ったときの余りは4x+12である。 整式f(x)を{(x-1)^2}(x-2)で割ったときの余りをa(x^2)+bx+cと表すときcの値が分からないので教えていただけませんでしょうか? a,b,cは実数。 整式f(x)を{(x-1)^2},{(x-2)^2},{(x-1)^2}*(x-2)で割ったときの商g(x),h(x),αとおくと f(x)=g(x){(x-1)^2}+8x-4 f(x)=h(x){(x-2)^2}+4x+12 f(x)=α{(x-1)^2}(x-2)+a(x^2)+bx+c この後が??です。

  • 高校数学、定積分の性質

    a,bを定数、xはtに無関係な変数とする。 (1)∫(a~b)f(t)dtは定数である。 、、、f(x)の不定積分の1つをF(x)とすると、 ∫(a~b)f(t)dt=[F(t)][上b、下a]=F(b)-F(a) すなわち∫(a~b)f(t)dtはtの値に無関係な定数となる。とあるのですが、どういう意味でしょうか? 定積分の結果は不定積分∫f(t)dt=F(t)+Cのように、tの関数にはならず、定数になる。という意味でしょうか?それとも∫(a~b)f(t)dt=∫(a~b)f(x)dxのように、積分変数は結果に無関係という意味でしょうか? (2)∫(a~x)f(t)dt,∫(a~b)f(x,t)dtは積分変数tに無関係で、xの関数である。 、、、∫(a~x)f(t)dt=F(x)-F(a)であるから、∫(a~x)f(t)dtはtに無関係でxの関数であるというのはどういう意味でしょうか?

  • 整式について

    整式について質問です。 整式f(x)があり、f(a)=0かつf'(a)=0であることと(x-a)^2でf(x)が割り切れることは同値であることはどう証明したらよいでしょうか?

  • 整式f(x)は、すべての実数tに対して、

    整式f(x)は、すべての実数tに対して、 (t+1)f(t+1)-(t-1)f(t-1)=t^2+t+1 を満たすとする。このとき、整式f(x)の次数nを求めよ。 f(x)=ax^n + bx^(n-1)・・・・・とし(a≠0)、 g(x)=xf(x)とおくと、 g(x)=ax^(n+1)+bx^n +・・・・・であり、与えられた等式は、 g(t+1)-g(t-1)=t^2+t+1・・・・・(1) g(t+1)-g(t-1) =a{(t+1)^(n+1)-(t-1)^(n+1)}+b{(t+1)^n-(t-1)^n}+【(n-1次以下)】 =a{2(n+1)t^n+(n-1次以下)}+b{2nt^(n-1) +(n-2次以下)} +(n-1次以下) =【2a(n+1)t^n +(n-1次以下)】 よって、(1)の両辺の最高次の項の次数を比較して、 n=2 ※ ax^(n+1)は、axのn+1乗の意味です。 教えてもらいたいのは、【 】で囲った2ヶ所です。 1つ目の【 】の(n-1次以下)というのは、どこから、なぜ、出てきたのか、と疑問に思いました。 そして、2つ目の【 】は、どのような計算でそのような式になったのか、これも疑問に思いました。 教えてください。よろしくお願いします。

  • 微積の問題です。

    以下のような問題に頭を悩ませております。 ふたつの関数f(x),g(x)は次の(I)(II)をみたしている。 この時次のf(x),g(x)をそれぞれ求めなさい。 (I)f(x)=πcosx+∫[π→x]g(t)dt (II)g(x)=cosx+(2/π)∫[0→x]f'(t)dt []内は積分範囲 この問題の解答が、次のようになっております。 ??に挟まれた部分が私の疑問です。 (I)の両辺をxで微分して、 f'(x)=πcosx+g(x) ?何故πcosxなのか。πsinxではないのか? 上式を(II)ヘ代入して、 g(x)=cosx+(2/π)∫[0→π]{πcost+g(t)}dt ?積分範囲は何故[0→π]に変わったのか。[0→x]ではないのか? ⇔g(x)=cosx+(2/π)∫[0→π]g(t)dt (A) 上式の積分項は定数。 以下省略 (A)の積分項が0と分かり、 従って g(x)=cosx f(x)=πcosx+sinx となっております。解答に記載されている式変形が理解できません。 分かる方、お教え頂けないでしょうか。

  • 微分・積分 問題

    微分・積分 問題 d/dt(∫[a→x]f(t)dt)=f(x)であることは解けます。 f(x)の原始関数をF(x)とすると、d/dtF(x)=f(x)であるから、 d/dt(F(x)-F(a))=f(x) では、d/dt(∫[a→x]t・f(t)dt)=xf(x)はどのように証明すれば良いでしょうか? ご回答よろしくお願い致します。

  • 微分・積分 問題

    微分・積分 問題 d^2/dx^2(∫[0→x](x-t)f(t)dt)=f(x)を証明せよ。 x・∫[0→x]f(t)dt-∫[0→x]t・f(t)dtとしました。 上の式を積分して、2回微分しようと考えているのですが、 ∫[0→x]t・f(t)dtが分かりません。 d/dx(x・∫[0→x]f(t)dt)-d/dx(∫[0→x]t・f(t)dt)と1回微分して、さらにもう一度微分を行うと、d/dx(∫[0→x]f(t)dt+xf(x)-xf(x)) よって、d/dx(∫[0→x]f(t)dt=f(x) 解き方は合っているでしょうか? ご回答よろしくお願い致します。

  • 積分方程式・・・

    「次の等式を満たす2次の整数f(x)を求めよ   x∫f(t)dt (定積分の区間は下端1、上端x)=f(x)+3x^4-4x^3-9 」という問題の解説で「この問いの積分方程式において両辺をxで微分すると(左辺では積の微分公式を用いる) ∫f(t)dt (定積分の区間は下端1、上端x)+xf(x)=f'(x)+12x^3-12x^2となり・・」とあったのですがどうして「∫f(t)dt (定積分の区間は下端1、上端x)+xf(x)  =f'(x)+12x^3-12x^2」となるのかわかりません・・ 教えてください!!

  • 定積分と微分の関係?

    F(x)=∫f(t)dt (定積分の区間は下端a、上端x)⇔F'(x)=f(x)かつF(a)=0 を証明する。        (→)d/dx・∫f(t)dt (定積分の区間は下端a、上端x)=f(x) かつF(a)=∫f(t)dt (定積分の区間は下端a、上端a)=0  であるから容易に証明される。 (←)F'(x)=f(x)であるからF(x)は不定積分の1つであり   ∫f(x)dx=F(x)+C(Cは積分定数) またF(a)=0であるから  ∫f(t)dt (定積分の区間は下端a、上端x)=[F(t)] (定積分の区間は下端a、上端x)=F(x)-F(a)=F(x) よって証明された。  とかいてあったのですがどういう意味なのかわからないんです!!  教えてください!!

  • f(x)=2x^2+1+∫(1→0){xf(t)dt}を満たす関数f(

    f(x)=2x^2+1+∫(1→0){xf(t)dt}を満たす関数f(x)を求めよ。という問題です。 ∫(1→0){xf(t)dt}をx∫(1→0){f(t)dt}に変形 x∫(1→0){f(t)dt}=aとおく f(x)=2x^2+1+ax a=∫(1→0){2t^2+1+at}dt =[2/3t^3+t+a/2t^2](1→0) =2/3+1+a/2 2/3+1+a/2=a a=10/3 f(x)=2x^2+10/3x+1 これで合っているでしょうか? いまいち自信がありません… 書き方がわかりにくくてすみません。 また、他の解き方があったら教えていただきたいです。 よろしくお願いします。