• ベストアンサー

定積分の漸化式の問題

f(x)を[0,∞)上の連続関数 n≧2なる自然数に対し、 F_n(x)={∫[0→x] f(u) (x-u)~(n-1) du }/(n-1)! とします。 このF_n(x) の導関数を求めたいのですが、計算が煩雑になってうまく求められません。 一応答えの予想としてはd/dx(F_n(x))=F_(n-1) (x) 、つまりパラメータnのときのFの導関数はn-1のときのFに等しい、だと考えています。

質問者が選んだベストアンサー

  • ベストアンサー
noname#152422
noname#152422
回答No.1

(x-u)^(n-1)の部分を二項定理でバラバラにして計算したら、あなたの予想と同じ結果が出てきました。 途中、 ((n-1)Cr)r=((n-2)C(r-1))(n-1) という関係と、 (1+(-1))^(n-1)=0 という関係を使いました。

nronrro
質問者

お礼

素早いご回答ありがとうございます。地道に計算したらできました。(1+(-1))~n を見落としていました。

関連するQ&A

  • この積分の求め方を教えて下さい。お願いします。

    こんにちは、式を打つことができなかったため、添付の通り、手書きで失礼します。 もともとは物理の問題だったのですが、答えを求める最終工程での積分でつまづいており、 何とか解法を教えていただけないかと思いました。 二問ありまして、両方とも式の基本的な骨格は似ているのですが、もしかしたら解法はことなるのかも知れません。 Q1は、「いつのまにやら」解けてしまいました。 u = (x^2 + a^2)として、置換積分を始めたところ、 インテグラルの中身が二つの関数、片方はx、もう片方は(x^2 + a^2)^(-3/2)でありまして、xが uをxについて微分したもので表せることに気付きました。つまりdu/dx = 2x したがって、xは(1/2) du/dx これをインテグラルの中に代入すると、du/dx とdxが中に存在することになり、duで表されてしまいました。すると後は、uについて積分してあげれば答えは出てしまいました。確かに求めた答えはあっているのですが、一体どういった定理・公式を使ったのか、偶然できただけなのか、解いた本人が理解しておりません。どうか、お教え頂ければと思います。 Q2は、途中でつまづいています。そのため、途中の経過も正しい道に進んでいるのかわからなくなってしまいました。基本的には置換積分を使っています。ところが、u = (x^2 + a^2)として置換作業をしようとしても、xが二乗であるため、シンプルにxをuの関数で表すことができません。 本来は、∫f(u) dx/du du と置換積分の公式に乗せたいところですが、dx/duがシンプルに求まりません。つまり、u = (x^2 + a^2)をuについて微分すると、1 = 2x dx/du + 0 となり、dx/duがuの関数に収まってくれません。このため、∫f(u) dx/du du = ∫u^(-3/2) (1/2x) duとなり、インテグラルの中身がまだ二つの文字が含まれ、ここで計算が止まってしまいました。どうか、解法のヒントを与えて頂ければと思います。 この文章や添付で式が見辛いことがあるかと思いますが、すみません。 その際はご指摘頂ければ書き直します。 以上の二点について、どうか宜しくお願い致します。

  • 積分漸化式

    (1)∫x^(n/2)/(x(1-x))^(1/2)dx (0→1) (2)∫x^(2n-1)e^(-x^2)dx   (0→+∞) (3)∫(1-x^2)^ndx       (0→1) いずれも漸化式がたれらそうでたてられません。まず(1)に関しては部分積分を使ってみましたがなにが積分されるほうで、なにが微分するほうか分からないのです。(2)に関してはx^2をtとおけば有名なガンマ関数になりました。けど解けません。

  • 積分・漸化式

    In= ∫ dx / (x^2 + 1)^n と与えられています。 これを漸化式で表すときの途中式で・・・ 1/(x^2 + 1)^n = {1/(x^2 + 1)^(n-1)} - (x/2) * {(x^2 + 1)'/(x^2 + 1)^n} と変形できるのは分かりました。ここから・・・ In=I(n-1) -[ { -x/2(n-1)(x^2 +1)^(n-1)} + {1/2(n-1)}{∫ dx/(x^2 +1)^(n-1)} ] への変形の仕方が分かりません。 おねがいします。

  • 漸化式の問題

    aectan(x)を続けて微分して導いた以下のような漸化式があります。この漸化式は解くことができるのでしょうか? n(n+1)*f_(n)+2nx*f_(n+1)+(x^2+1)*f_(n+2)=0 ここでf_(n)はf(x)のn階微分を表しています。 nは自然数です。 方法だけでもいいので教えていただけると幸いです。

  • 積分の問題で答えが二つでます。

    ∫(3x + 2)^2 dx という問題なんですが、答えが二つでてしまって困っています。 展開してみると、 ∫(3x + 2)^2 dx = ∫(9x^2 + 12x + 4) dx = 3x^3 + 6x^2 + 4x + C となりますが、 置換積分でしてみると、 u = 3x + 2 du = 3dx dx = du/3 ∫(3x + 2)^2 dx = ∫u^2 * du/3 = ∫1/3 * u^2 du = 1/9 * u^3 + C = 1/9 * (3x + 2)^3 + C = 1/9 * (27x^3 + 54x^2 + 36x +8) + C = 3x^3 + 6x^2 + 4x + 8/9 + C となります。 どういう理由で一方のやりかたでやらなければいけなくて、どういう理由でもう一方のやりかたを使ってはいけないのか、というあたりを教えてください。

  • 積分の問題です

    ∫(範囲:0~∞)(x^n*e^(-x)dx (nは自然数) この積分についての解き方を教えてください。 また答えはどのようになりますか?

  • 高木関数に似た問題です。

    高木関数に似たものについての質問です。 実数上の関数fを f(x)=x (0≦x<1/2), 1-x (1/2≦x<1) f(x+1)=f(x) で定義します。すると,級数 Σ2^(-r)・f(4^r・x) r=1~∞の総和 はある連続関数Fに一様収束します。(これは証明済み) このとき,mは整数,nは自然数としたときに,u=(4m)4^(-n) ,v=(4m+2)4^(-n)とおくと 2^n・F(u) は偶数で 2^n・F(v) は奇数になることを示せ。 という問題です。 計算だけだとは思うのですが,細かい部分であいません。 よろしくお願いします。 2^n は2のn乗を表しています。

  • 積分:∫(x^2+1)^50*2x dx

    x^2=1=uとして、d/dx[F(x)]=d/du[F(u)]du/dx=f(u)du/dxの公式を使って求めるのですが、 教科書の解説ではこうなっています。 u=x^2+1とする。 du/dx=2xなので、 ∫(x^2+1)^50*2x dx=∫[u^50 du/dx] dx=∫u^50 du=u^51/51+C=(x^2 + 1)^51/51+C ∫(x^2+1)^50*2x dxから∫[u^50 du/dx] dx=∫u^50 duに移行する間に2xが消えてしまったように思います。 どこに行ってしまったのでしょうか? duを使った積分の基本問題だと思いますが、教科書の解説が分からずすいませんが、教えてもらえますか? よろしくお願いします。

  • 分数の積分問題

    ∫4/(x^2-x+1)dxを求めるのに x-1/2=(√3)tanu/2とおくと dx=(√3)/2)/(cosu)^2du x^2-x+1={(√3)/2}^2/(cosu)^2 ∫4〔(cosu)^2/{(√3)/2du})^2〕du/(cosu)^2=4/{(√3)/2}∫du=8u/√3+C という答なのですが x-1/2はx^2-x+1を(x-1/2)^2+3/4から出てくると思うのですが、x-1/2=(√3)tanu/2がどうしても出てきません。なぜこうなるのでしょうか。 わかりやすくお願いします。

  • 積分の問題です。

    nを自然数とする。I(n)=∫(0→1)(1-x^2)^n/2dxのとき、次の問いに答えよ。 I(n+2)=(n+2)/(n+3)I(n)を示せ。 という問題です。 I(n+2)=∫(0→1)(1-x^2)(1-x^2)^n/2dx =∫(0→1)(1-x^2)^n/2dx-∫(0→1)x^2(1-x^2)^n/2dx =I(n)-∫(0→1)x^2(1-x^2)^n/2dx =I(n)-∫(0→1)x^2{-1/x(n+2)*(1-x^2)^n+2/2}'dx =I(n)-∫(0→1)2/(n+2)*(1-x^2)^n+2/2dx =I(n)-2/(n+2)I(n+2) したがって、I(n+2)+2/(n+2)I(n+2)=I(n) ∴I(n+2)=(n+2)/(n+4)I(n) となり、問いと一致しません。 どこが間違っているのか、指摘して頂ければありがたいです。 よろしくお願いします。