• 締切済み

確率の求め方

確率を求める問題について質問です。 nを2以上の整数とする。中の見えない袋に2n個のボールがあり、そのうち3個が赤で残りは全て白。 AさんとBさんがAさんから始めて交互に1個ずつボールを取りだし、先に赤を取りだした方がが勝ちとする。取りだしたボールは戻さないものとして、Bさんが勝つ確率を求めよ。 という問題なのですが、どのように求めればいいのでしょうか。 答えとしては、(4n-5)/4(2n-1) となっています。 いきなり一般性を求めるのは難しいので、n=2,3,4を考えてみて ・n=2 1C1/4C1*3C1/3C1=1/4 ・n=3 (3C1/6C1*3C1/5C1)+(3C1/6C1*2C1/5C1*1C1/4C1*3C1/3C1)=7/20 ・n=4 (5C1/8C1*3C1/7C1)+(5C1/8C1*4C1/7C1*3C1/6C1*3C1/5C1)+(5C1/8C1*4C1/7C1*3C1/6C1*2C1/5C1*1C1/4C1*3C1/3C1)=11/28 と答えに合う形にはできるのですが……、一般性が見つけられません。 (上の式はそれぞれ、Bが(1回目に赤を引く確率)+(2回目に赤を引く確率)+(3回目に赤を引く確率)としています。) 見にくくて申し訳ありませんが、どういう式変形をすれば答えの形になるのか教えていただけたらと思います。

みんなの回答

回答No.3

偶数番目に始めて赤の確率 2K-1個が白   (2n-3C2k-1)/(2nC2k-1)   A 2k-1回目まで取り出したのが全部白 次に赤の確率  (3C1)/(2n-2k+1C1)    B Σ(K=1→n-1)A・B (2n-3C2k-1)=(2n-3)!/(2k-1)!(2n-2k-2)! (2nC2k-1)  =(2n)!/(2k-1)!(2n-2k+1)! A=(2n-2k+1)(2n-2k)(2n-2k-1)/2n(2nー1)(2n-2) B=(3C1)/(2n-2k+1C1) =3/(2n-2k+1) A・B=3(2n-2k)(2n-2k-1)/2n(2n-1)(2n-2)  =(6K^2-(12n-3)K+6n^2-3n)/2n(2n-1)(n-1) Σ(K=1→n-1)A・B =1/2n(2n-1)(n-1)Σ(K=1→n-1)(6K^2-(12n-3)K+6n^2-3n) Σ(K=1→n-1)(6K^2-(12n-3)K+6n^2-3n)=n(n-1)(4n-5)/2 なので  1/2n(2n-1)(n-1)Σ(K=1→n-1)(6K^2-(12n-3)K+6n^2-3n)   =(4n-5)/4(2n-1)

回答No.2

偶数版目に始めて赤の確率 2K-1個が白   (2n-3C2k-1)/(2nC2k-1)   A 2k-1回目まで取り出したのが全部白 次に赤の確率  (3C1)/(2n-2k+1C1)    B Σ(K=1→n-1)A・B 偶数番目に出る確率を足していけば

  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.1

こんばんわ。 「Bさんが勝つ」ことを考える前に、 まず「どの時点で試合が終わるか」を考えてみてください。 Aさんが勝つにしても、Bさんが勝つにしても「赤球が出たら」試合は終わります。 つまり、それまでは「白球が出続けている」ということです。 そして、AさんとBさんの違いは「奇数回目」か「偶数回目」かの違いです。 「2k回目(k= 1~n)で、初めて赤球が出る確率を足し合わせる」と考えてみてください。 球の総数が 2nと偶数なのも、そのあたりから出ているかと。^^

関連するQ&A

  • 高校数学確率の問題です。

     A が赤玉 1 個、B が白玉 1 個、C が青玉 1 個持っている。コイン投げでコインの表が出れば A と B の持ち玉を交換し、裏が出れば B と C の持ち玉を交換する。  N回コインを投げて繰り返したとき A、B、C が赤玉を持っている確率 A[n]、B[n]、C[n] を求める。 n = 1のとき ・表が出た場合、その確率は 1/2 であり、B が赤玉を持つことになるから   B[1] = 1/2 ・裏が出た場合、その確率は 1/2 であり、A が赤玉を持つことになるから   A[1] = 1/2 したがって   A[1] = 1/2,  B[1] = 1/2,  C[1] = 0.  表が出れば、赤を持っているのが A なら B に、B なら A に、C なら C に移動する。  裏が出れば、赤を持っているのが A なら A に、B なら C に、C なら B に移動する。  よって、   A[n+1] = A[n]/2 + B[n]/2 ・・・・・(#1)   B[n+1] = A[n]/2 + C[n]/2 ・・・・・(#2)   C[n+1] = B[n]/2 + C[n]/2 ・・・・・(#3)  この漸化式の解き方がよくわかりません。 (#1)-(#3)から   A[n+1] - C[n+1] = (A[n]-C[n])/2 ですが、(#2)と(#3)、(#1)と(#2)ではうまい関係が導けません。

  • 確率(サイコロ)の問題です

    問)n個のサイコロ(n≧2)を同時に投げる時、出る目の最小値が2、最大値が4である確率を求めよ 解) 目の出方は6`n通り A:出る目が全て2、3、4のいずれか B:出る目が全て2、3のどちらか C:出る目が全て3、4のどちらか よって求める確率は 〔P(A∩(B∪Cでない))〕=P(A)-P(B∪C)=P(A)-{P(B)+P(C)-P(B∩C)}であり B∩C:出る目が全て3 だから、3`n/6`n-{(2`n+2`n-1)/6`n}=(3`n-2*2`n+1)/6`n 〔〕内の式をどうやって立てたのか分かりません。(nに2等を代入すると正しい答えが出てくるので答えは合っています) どなたかヒントだけでもいいので、考え方を教えていただけませんか?お願いしますm(__)m

  • 確率の問題

    質問があります。 まず問題は 「A,B,Cの3人が色のついた札を1枚ずつ持っている。はじめにA,B,Cの持っている札の色はそれぞれ赤、白、青である。Aがさいころを投げて3の倍数の目が出たらAはBと持っている札を交換し、そのほかの目が出たらAはCと持っている札を交換する。この試行をn回繰り返した後に赤い札をA,B,Cが持っている確率をぞれぞれa〔n〕、b〔n〕、c〔n〕とする。 (1)n≧2のときa〔n〕、b〔n〕、c〔n〕を a〔n-1〕、b〔n-1〕、c〔n-1〕で表せ。 (2)a〔n〕を求めよ」 です。 添付画像の通り、(1)は求まりました。 つまずいているのは(2)です。 答えは添付画像の一番下の通りになったのですが 模範解答では a〔n〕=1/3a〔n-2〕+2/9 となってnが一つ飛んだ漸化式になってます。 そこからnの偶奇分けをして nが偶数のとき a〔n〕=2/3(1/3)^n/2 +1/3 nが奇数のとき a〔n〕=-1/3(1/3)^(n-1)/2 +1/3 となって解答終了です。 解答の答えには納得したのですが 自分が導いたa〔n〕も式の導き方として何ら矛盾がない気がして仕方ありません。 どこで間違いを犯しているのでしょうか。

  • 漸化式と確率の問題で・・・・

    問題 箱A,Bのそれぞれに赤玉1個白玉3個合計4個ずつ入っている。一回の試行で 箱A、Bの箱から無造作に1個ずつ選び交換する。この試行をn回繰り返した後、 箱Aに赤1個白3個入っている確率Pnを求めよ。 という問題がありました。 〔解答〕、 試行をn回繰り返した後→n+1回後への箱Aの変化の様子から 漸化式をつくる。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 疑問1 なぜ、n回からn+1回への状況変化なのでしょうか? n回目のときにAに赤1白3はいっている確率なのだから、 やるとしたら、n-1回目からn回目の情況変化だとおもうのですが・・・・ n回目のときにAに赤1白3なのにn+1回めのときを考えているのはなぜでしょう? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 試行をn回繰り返した後の箱Aに入っている玉は 赤1 白3 赤0 白4 赤2 白2 の3通りでそれぞれの情況である確率をPn、Qn、Rnとおく。 1回の試行で箱Aに入っている玉が (1)赤1 白3から赤1 白3になる確率は5/8 (2)赤0 白4から赤1 白3になる確率は1/2 (3)赤2 白2から赤1 白3になる確率は1/2 これらは排反であるので Pn+1=Pn×5/8+Qn×1/2+Rn×1/2 Pn+1=1/8Pn+1/2 この漸化式は Pn+1-4/7=1/8(Pn-4/7) なのでPnのn=0のときは1なので Pn=4/7+3/7(1/8)^n・・・答え ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 疑問2 なぜ、n=1の時ではなくn=0のときなんでしょうか? 試行がおこなわれず、0回のときもあるからで、n≧1ではなく n≧0からですか? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  • 確率の質問です!

    n個の箱があります。また、赤、青、黄の3色の玉が、それぞれ十分な数あります。 n個の箱全てに玉を入れて、赤、青、黄がそれぞれ、少なくとも1つずつは存在する確率を求めたいと思っています。 n=3の時は、1×(2/3)×(1/3)=2/9だと思います。 しかし、式で表そうとすると、n≧4で途端に複雑になります。 n=4ぐらいなら、何とか樹形図で調べられます(たぶん4/9)が、3のn乗通りのパターンが存在するため、n≧5はとても大変です。 この問題をnを含む式で表すことはできないでしょうか?

  • 確率

    次の問題が解けずに困っています。 教えていただければ幸いです。 1つのサイコロを四回投げて、出た目をa,b,c,d、またN=a*b*c*dとする。 (1)N=720となる確率 (2)N=360となる確率 (3)N>720となる確率

  • 確率について

    いまn個のボールと2n個の箱があります。 n個の箱にボールを入れますが、箱には何個でもボールは入るものとします。 いまボールは等しい確率(1/2n)の確率でどこかの箱に必ず入るとき、箱にはボールが1個か0個入っている確率は? (2n/2n){(2n - 1)/2n}・・・{(n +1 )/2n}となるのはわかるのですが、こう考えるとダメなのはなんでなの? いまn個の箱にボールを1個ずついれて、n個の空箱とn個のボールが入った箱があります。 この箱の並べ方は2nCn通り、ボールが箱に入るすべては、n個のボールと2n-1の仕切り棒の並べ替えと考えて、3n-1Cn 2nCn/3n-1Cn これではなぜダメなの?

  • 確率

    一個のサイコロをn回振る 1)n≧2のとき、1の目が少なくとも1回出て、かつ2の目が少なくとも1回出る確率 2)n≧3のとき、1の目が少なくとも2回出て、かつ2の目が少なくとも1回出る確率 事象A 1の目が一回も出ない   B 2の目が  〃      C 1の目が1回だけ出る ←ここがよくわかりません。少なくとも2回の否定は0 or 1 ではないのでしょうか、それともn≧3のとき、ベン図で考えて1が出ないことはn(A)で考えられているので、Cはこのようになるのでしょうか。 1)A… n回とも2,3,4,5,6の目が出る n(A)=5のn乗   B       1,3,4,5,6 (B)=〃   A∩B     3,4,5,6 (C)=4のn乗 よって 1-n(A)+n(B)-n(A∩B)/n(u)=1-2・5のn乗-4のn乗/6のn乗 2)n≧3のとき 1の目が少なくとも2回出て、かつ2の目が少なくとも一回出る確率は   1)と同様に考えて   C…n回中、1の目がちょうど1回出て、他のn-1回は2,3,4,5,6の目が出る   n(C)=nC1・5のn-1乗=n・5のn-1乗   B∩C=n回中、1の目がちょうど一回出て、他のn-1回は、3,4,5,6の目が出る   n(B∩C)=nC1・4のn-1乗=n・4のn-1乗 1-n(A)+n(B)+n(C)-n(A∩B)-n(B∩C)/n(u) =1-(10+n)・5のn-1乗-(4+n)・4のn-1乗/6のn乗 回答お願いします。

  • 確率の問題

    確率の問題なのですが、答えの求め方がさっぱり分かりません。 この問題の答えの求め方を教えて下さい。 問題 2 個のさいころA,B を投げ,出た目をそれぞれx, y とする。 2 数x, y のうち大きくない方をm(x, y) と表すことにする。 例えば,m(2, 3) = 2, m(3, 3) = 3 である。 このとき,m(x, y) = n (n = 1, 2, ・ ・ ・ , 6) となる確率P(n) をn の式で表しなさい。 よろしくお願いします。

  • 確率の問題です。

    以下の問題が解けません。どうかよろしくお願いします。 A,B,Cの3個のさいころがある。A,B,Cにそれぞれ書かれた6個の数字の集合をA,B,Cとすると、 A={1,2,3,4,5,6} B={b1,b2,b3,b4,b5,b6) (b1~b6は相異なる整数) C={c1,c2,c3,c4,c5,c6) (c1~c6は相異なる整数) である。この3個のさいころを同時に投げるとき、2個で同じ目が出、 残りの1個は他と異なる目が出る確率をpとする。 A,B,Cの3個すべてに書かれている整数がn個 B,Cには書かれているがAには書かれていない整数がa個 C,Aには書かれているがBには書かれていない整数がb個 A,Bには書かれているがCには書かれていない整数がc個 であるとき、 pをn,a,b,cを用いて表し、さらにpを最大にするn,a,b,cの値を求めよ。 pをn,a,b,cで表すところまでは自分なりの答えを出したのですが、 (p={2*(a+b+c)+n*(6-n)}/72 になりました。)その後のpを最大にするときのn,a,b,cの値がわかりません。 お手数ですがすみません。