• ベストアンサー
• すぐに回答を！

# 英語が出来る方助けてください。(かなり困っています。)

• 回答数1
• 閲覧数39
• ありがとう数1

## 質問者が選んだベストアンサー

• ベストアンサー
• 回答No.1

はい翻訳です 現在、李(z)は距離zの関数が表層の中で原子のセンター(または、イオン)の飛行機を形成するので、急送された、分子iのための位置エネルギーです。 rijは固体における分子iとそれぞれの原子(イオン)jの間の距離です。 実際には、限られた数の原子だけが距離に従った急速なエネルギー低下のため考慮に入れられます。 魅力的でよそよそしい相互作用の間のバランスは、ポイントが存在することを意味します、分子の位置エネルギーが最小である表面からの距離zeで、図1.2に表されるように。 もちろん、李(z)の値は表面からの距離に依存するだけではなく、表面の位置(すなわち、xy飛行機の)にも依存しなければなりません。 これが完全結晶の1つの表面の形であると、位置エネルギーの通常の変化が表面のむこうにあるでしょう。 最も好ましいサイトが表面原子(Cf図1.3)のアレイのセンターにあるのがわかるのは、驚くべきものではありません。 位置エネルギー井戸(zeの)の対応する深さは吸着質の吸収剤の密度と結晶構造、分極率、および分子サイズに依存するでしょう。 あん部か'鞍点'を通して表面の向こう側の吸着分子の動きのための最も簡単な経路があります、そして、xy飛行機での翻訳運動へのエネルギー障壁は違いによって2つの位置(図1.3)のための対応するminima位置エネルギーで与えられます。 糊と鋏で手直し 今、Li(z)は分子iのポテンシャルエネルギーで表面層中の原子 (または、イオン)の中心が 形成する面からの距離zの関数として表されている。 rijは固体中における分子iと 各原子(イオン)jの間の距離である。 実際には、エネルギーが距離に従って急速に 低下するために、限られた数の原子だけが考慮に入れられます。図1.2に示される ように、引力と斥力の相互作用間のバランスは、表面からの距離zeで分子の位置エネルギーが 最小となるある点が存在することを意味しています。当然、Li(z)の値は表面からの 距離に依存するだけではなく、表面内 (つまり、xy面中)での位置にも依存します。 もしこれが完全結晶の１表面の形であれば、ポテンシャルエネルギーは面全体に渡り 周期的に変化します。 最も好ましいサイトが表面原子配列(図1.3参照)の中心に あることを見出すのは、驚くべきことではありません。 ポテンシャルエネルギー井戸の (zeでの)対応する深さは吸着剤の密度と結晶構造、および吸着された物質の分極率と 分子サイズに依存します。 吸着分子が表面を横切って動く最も楽な経路は谷か「'鞍点」で、xy面中での並進運動への エネルギー障壁は2つの位置に相応する最小ポテンシャルエネルギーの差として 与えられる(図1.3)。 結局、直接訳すより２，３倍の時間が掛かりました。 教科書程度の内容ですから、まず日本語の教科書を読んでから翻訳に取組んでください。 機械翻訳でも内容は理解できますが、翻訳運動とかxy飛行機とか愉しい表現が 散見されます。 このスレッドは丸投げ禁止ですから、今後は試訳を出して聞くようにしましょう。

### 質問者からのお礼 2010/11/02 19:51

ありがとうございます。 すみませんでした。次からは試訳を出すようにします。 日本語の教科書がないので…頑張ります。

### 関連するQ&A

• 英語が出来る方助けてください。(かなり困っています。)

英語が出来る方助けてください。(かなり困っています。) 今学生をしているのですが400ページほどある英語の専門書を読み始めたのですがこの部分の訳がどうしてもしっくりこないのですが分かる方いませんでしょうか？？ 英語が大変苦手なので自分の訳に自信がなく困っています。 先生が海外に勉強に行っているので聞けず大変困っています。もし分かる方がいらしたら宜しくお願いします。 1.6. Mobility of Adsorbed Molecules The translational movement of adsorbed molecules is governed by the amplitude of the oscillations of Li(z) across the surface and by the available thermal energy. If the variations in Li(z) are much smaller than the mean thermal, kT, the energy barriers between adsorption sites are small enough to be overcome easily at the operational temperature: the adsorbed molecules therefore retain two translational degrees of freedom and can be regarded as mobile. On the other hand, if the energy barriers are much larger than kT, the adsorbed molecules are said to be localized since they spend most of their time on particular surface sites. In the hypothetical case of a perfectly homogeneous surface, there is no variation of Li(z) in the xy plane - see Figure 1.4a. It is more realistic to picture a uniform surface, which gives rise to energy wells of the same depth. Now, the potential energy profiles corresponding to mobile and localized adsorption are shown respectively in Figures 1.4b and 1.4c. In the former case, there is a random distribution of adsorbed molecules across the surface; whereas in the latter case, the location of the adsorbed molecules is governed by the surface structure of the adsorbent. Localization does not prevent the adsorbed molecules from 'hopping' from one site to another (unlike the situation in immobile chemisorption), but it is not compatible with the state of a close-packed completed monolayer.

• 英語が出来る方助けてください。(かなり困っています。)

英語が出来る方助けてください。(かなり困っています。) 今学生をしているのですが400ページほどある英語の専門書を読み始めたのですがこの部分の訳がどうしてもしっくりこないのですが分かる方いませんでしょうか？？ 英語が大変苦手なので自分の訳に自信がなく困っています。 The results shown in Figure 1.5 illustrate this behavior. Here E0 is measured from the enthalpy of adsorption, [Padsh’0] (determined by the chromatographic method at very low surface coverage, as explained in Chapter 3). E0 is plotted against the number of carbon atoms, NC, in the various series of hydrocarbons. It is striking that there is an almost common linear relation between E0 and NC. Thus, for a given NC, quite close agreement is obtained between the corresponding values of E0 for the series of alkanes, alkenes and aromatic hydrocarbons (Cao et al., 1991). By plotting experimental and theoretical low-coverage enthalpies of adsorption as a function of the molecular polarizability, Avgul and Kiselev (1970) also obtained a linear relation for wide range of polar and non-polar molecules on graphitized carbon black (including noble gases, dimethyl ketone, ethyl ether and a series of alcohols). We may conclude that there is ample evidence to confirm the essentially non-specific nature of the interactions between the surface of graphitized carbon and all types of gas molecules.

• 英語が出来る方助けてください。(かなり困っています。)

英語が出来る方助けてください。(かなり困っています。) 今学生をしているのですが400ページほどある英語の専門書を読み始めたのですがこの部分の訳がどうしても出来ないのですが分かる方いませんでしょうか？？ 英語が大変苦手なので自分の能力のなさに困っています。良ければ助けてください。 The results shown in Figure 1.5 illustrate this behavior. Here E0 is measured from the enthalpy of adsorption, [Padsh’0] (determined by the chromatographic method at very low surface coverage, as explained in Chapter 3). E0 is plotted against the number of carbon atoms, NC, in the various series of hydrocarbons. It is striking that there is an almost common linear relation between E0 and NC. Thus, for a given NC, quite close agreement is obtained between the corresponding values of E0 for the series of alkanes, alkenes and aromatic hydrocarbons (Cao et al., 1991). By plotting experimental and theoretical low-coverage enthalpies of adsorption as a function of the molecular polarizability, Avgul and Kiselev (1970) also obtained a linear relation for wide range of polar and non-polar molecules on graphitized carbon black (including noble gases, dimethyl ketone, ethyl ether and a series of alcohols). We may conclude that there is ample evidence to confirm the essentially non-specific nature of the interactions between the surface of graphitized carbon and all types of gas molecules.

• 英語が出来る方助けてください。(かなり困っています。)

英語が出来る方助けてください。(かなり困っています。) 今学生をしているのですが400ページほどある英語の専門書を読み始めたのですがこの部分の訳がどうしても出来ないのですが分かる方いませんでしょうか？？ 英語が大変苦手で自分の英語力に幻滅しながら頑張ったんですか無理でした。大変困っています。 もし分かる方がいらしたら宜しくお願いします。 The low-coverage energy data for the adsorption of n-hexane and benzene on various non-porous solids in Table 1.4 illustrate the importance of the surface structure of the adsorbent and the nature of the adsorptive. Since n-hexane is a non-polar molecule, Ens>>Esp' and therefore the value of E0 is dependent on the overall dispersion forces and hence on the density of the force centres in the outer part of the adsorbent (i.e. its surface structure). Dehydroxylation of a silica surface involves very little change in surface structure and therefore no significant difference in the value of E0 for n-hexane. However, replacement of the surface hydroxyls by alkylsilyl groups has resulted in much greater effect. In this case the weakening of the adsorbent-adsorbate interactions is mainly due to the fact that the surface modification has resulted in a reduction in the density of the force centres. The polarizabilities of benzene and hexane are very similar, but because of its electronic structure benzene exhibits significant specificity in its interaction with ionic or polar surface (e.g. hydroxylated silica and barium sulphate). Considerable attention has been given to the specificity associated with hydroxylated silica, but some specific adsorbent-adsorbate interactions are enhanced to an even greater to an even greater extent by the exposure at the surface of ionic sites. This is illustrated by benzene data on BaSO4 in Table 1.4 and the nitrogen data on rutile in Table 1.5.

• この文章の和訳をお願いします。

According to Hayashi et al., We will adopt the system of units where the distance between the planet and the Sun, the sum of their masses and the angular velocity of the rotation of the planet are all unity. When the coordinate is chosen such that the (x,y) plane coincides with the rotational plane of the planet, i.e., the ecliptic plane, the Sun and the planet are at rest on the x-axis and the planet is at the origin, then the equations of motion are given by (Szebeheley^10)), 　　　　　　　　　　　x’’－2y’=－∂U/∂x, 　　　　　　　　 (2・1) 　　　　　　　　　　　 y’’+2x’=－∂U/∂y, 　　　　　　　　(2・2) where U is the effective potential, described as 　　　　　　　　　　　　　　　U=－(μ/r_1)－((1－μ)/r_2)－((1/2)r^2)+U_0. 　　　　　　　　(2・3) よろしくお願いします。

• 英語が出来る方助けてください。(かなり困っています。)

• この英文の和訳をお願いします。

The second feature seen from Fig.11 is that the profile of R(e,0) does not depend significantly on r_p (for r_p=0.005 to 0.0002). Only an exception is found near e≒1, but this is, in some sense, a singular point in R(e,0), which appears in a narrow region around e≒1 ( in fact, for e=0.9 and 1.2, there is no appreciable difference between r_p=0.005 and 0.0002). Thus, neglecting such fine structures in R(e,0), we can conclude that R(e,0) does depend very weakly on r_p. In other words, the dependence on r_p of <P(e,0)> is well approximated by that of <P(e,0)>_2B given by Eq. (28). Now, we will phenomenalogically show what physical quantity is related to the peak at e≒1. We introduce the collisional flux F(e,E) for orbits with e and E, where E is the Jacobi energy given by (see Eq. (15)) E=e^2/2-(3b^2)/8+9/2. (31) The collisional flux F(e,E) is defined by F(e,E)=(2/π)∫【‐π→π】p_col(e,i=0, b(E), τ)dτ. (32) From Eqs. (11) and (31), we obtain <P(e,0)>=∫F(e,E)dE. (33) In Fig.12, F(e,E) is plotted as a function of E for the cases of e=0, 0.5, 1.0, and 2.0. We can see from this figure that in the case of e=1 a large fraction of low energy planetesimals contributes to the collisional rate compared to other cases (even to the cases with e<1). In general, in the case of high energy a solution for the three-body problem can be well described by the two-body approximation: in other words, in the case of low energy a large difference would exist between a solution for the three-body problem and that in the two-body approximation. As shown before, this difference appears as an enhancement of the collisional rate. Thereby an enhancement factor peak is formed at e≒1 where a large fraction of low-energy planetesimals contributes to the collisional rate. よろしくお願いいたします。

• この文章の和訳をお願いします。

Now, we shall concentrate on the collision orbits. Figure 5 illustrates the minimum separation distance r_min in the first encounter (solid curves), identical to that obtained by Petit and Hénon (1986). One sees immediately, that there are two different zones: the “regular” zones, in which r_min varies smoothly with a change of parameter b and the irregular (or “chaotic”) zones, where r_min changes greatly with tiny differences in the choice of b. The chaotic zones lie near b=1.93, 2.30 and 2.48, with very narrow ranges of b. In the regular zone, we find two broad bands of collision orbits around b=2.09 and 2.39. These collision bands were first found by Giuli (1968). The sum of width of the collision bands ⊿b is found to be about 0.098, if the planetary radius is 0.005. よろしくお願いします。

• この文章の和訳をお願いします。

We have two kinds of the final stage of the particle orbit: One is the scattering case and another is the collisional case. For the scattering case, after the passage near the planet a particle orbit settles again to the Keplerian at the region far from the planet. The final orbital elements (b_f~, e_f~, ε_f, δ_f), of course, are different from the initial owing to the gravitational interaction with the planet. On the other hand, we regard the case as the collision of the particle with the planet when the distance between the particle and the center of the planet becomes smaller than the planetary radius, r_p, which is given in the units adopted here by 　　　　　　r_p=R_p/R=(3M/4πρ)^(1/3)/R, 　　　　　　 =4.57×(10^－3)h/(R/1AU), 　　　　　　　　(2・12) where R_p and R are the radius of the planet in ordinary units and the distance between the planet and the Sun, respectively. どうかよろしくお願いします。

• 英語が出来る方助けてください。(かなり困っています。)