• ベストアンサー
  • 困ってます

統計学の中心極限定理(nが十分に大きいとき、どんな分布から抽出しても、

統計学の中心極限定理(nが十分に大きいとき、どんな分布から抽出しても、標本平均は正規分布)について質問させて頂きたいと思います。母集団からn個の標本をk回を取り出す場合、上記の「nが十分に大きいとき」とは1.(文字通り)母集団から取り出すn個の標本が十分大きい、2.取り出し回数のk回が十分多い、3.1と2の両方、のどれを意味しているのでしょうか?初学者なので基本的な質問かと思いますがよろしくお願いいたします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
noname#227064
noname#227064

「母集団から大きさがnの標本をk個得た、すなわち、n個のデータから標本平均を計算し、これをk回繰り返しk個の標本平均を得た」なら、nが十分大きいときです。 「母集団から大きさがkの標本をn個得た、すなわち、k個のデータから標本平均を計算し、これをn回繰り返しn個の標本平均を得た」なら、kが十分大きいときです。 標本の大きさと数では意味が違いますのでご注意ください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

明快なご回答有難うございました。たしかに、サンプルサイズとサンプル数の違いは誤解しやすい部分だと教科書にも書かれていました。

その他の回答 (1)

  • 回答No.1

中心極限定理の n は基本的に試行回数と考えると分かり易いと思います。 標本の大きさは関係ありません。何度の何度も繰り返していると正規分布に近付いていくということです。 「母集団からn個の標本を取り出す」ことをk回試行する、と考えた場合、2を意味することになります。 この場合の標本平均は「n個の標本」に対するものとなります。「1個の標本」ではありません。 ただし、母集団からn個の標本を取り出すことに関して重複を許すのであれば、 「母集団から1個の標本を取り出す」ことをn×k回試行する、と考えることもできます。 この場合の標本平均は「1個の標本」に対するものとなります。 問題の意図としては前者かと思います。 ご参考までに。 間違ってたらごめんなさい。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

早速のご回答有難うございました。調べてみるとたしかに「もし母集団が正規分布にしたがっているなら、標本のnの大小に関らず、中心極限定理が成立する」とありました。

関連するQ&A

  • 中心極限定理について

    お世話になります。 統計学で出てくる中心極限定理について基本的なことをうかがいます。 定理の内容はおよそ「母集団が任意の確率分布を持っていても、そこから抽出した標本分布は標本数nが無限大に近づくにつれて正規分布に近づく」といったことだと思いますが、nを無限大にもっていくとき母集団に近づくのに(というか母集団を超えることも)、たとえば母集団が正規分布していない場合でもそれが正規分布に近づいていくというのは矛盾がある気がするのですが、どこが誤っているのでしょうか。 詳しい方ご教示願います。

  • 有限母集団の中心極限定理

    訳あって確率統計の勉強をしておりますが、中心極限定理について質問があります。 「母集団の平均をm、分散をvとすると、そこから抽出したn個の標本の平均の分布は、平均m、分散v/nという分布になり、標本数をn→無限大とすると、分布は母集団の分布によらず正規分布に近づく。」 とありますが、母集団が有限個(N個)の集合ならどうなるでしょうか。 その場合、標本数をnがNに等しくなった時点で平均はm、分散0、つまり標本から母集団の平均が完全に推定(決定)することになります。 ●有限母集団の場合も中心極限定理は成り立つのか? ●成り立つならn→Nで分散が0になるという点はどう表現されるのか? このあたりを教えてください。

  • PERT と中心極限定理 2

    中心極限定理は、次のような定理だと思います。 平均μ、分散σ2の母集団から無作為にn個の標本を抽出してその平均値mを求めることを繰り返すと、母集団がどのような分布を示す集団であるかに拘わらず、nが充分大きいとき、mの分布は平均μ、分散σ2/nの正規分布で近似される。 次に、PERTにおいて、n個の作業から成るプロジェクトの全体工程Tを求める方法は、一般に次のように説明されています。 作業iの所用時間がベータ分布に従うと仮定すると、その期待値ei、楽観値oi、最可能値mi、悲観値pi、分散σi2の間には次の関係がある。 ei=(oi+4mi+pi)÷6 (式-1) σi2=(pi-oi)2÷36  (式-2) 一般に平均と分散については加法定理が成り立つので、クリティカルパス上のn個の作業の総所要時間(n個の作業の所要時間の合計)Tの期待値eと分散σ2は次のように表される。 e=Σei  (式-3) σ2=Σσi2 (式-4) 中心極限定理により、Tは期待値e、分散σ2の正規分布で近似されるので、今、e=20、σ2=25であるとすると、95%の確率でTが完了する工期は、標準正規分布表の95%点=1.960から、20-1.960×5≦T≦20+1.960×5となる。 それで、次の(1)、(2)が分かりません。 (1)中心極限定理は、「平均μ、分散σ2の母集団から無作為にn個の標本を抽出してその平均値mを求めること」から始まる定理なのに、上記Tを求めた過程には、「平均μ、分散σ2の母集団」も「n個の標本の抽出」も「その平均値m」も、一切何もありません。母集団、抽出、平均値にあたるものは、上記Tを求めた過程のどの値または計算なのでしょうか。 (2)「中心極限定理により、Tは期待値e、分散σ2の正規分布」とありますが、いったいどう考えればTを正規分布であるとみなせるのでしょうか。

  • PERT と中心極限定理

    中心極限定理は、次のような定理だと思います。 平均μ、分散σ2の母集団から無作為にn個の標本を抽出してその平均値mを求めることを繰り返すと、母集団がどのような分布を示す集団であるかに拘わらず、nが充分大きいとき、mの分布は平均μ、分散σ2/nの正規分布で近似される。 次に、PERTにおいて、n個の作業から成るプロジェクトの全体工程Tを求める方法は、一般に次のように説明されています。 作業iの所用時間の期待値ei、楽観値oi、最可能値mi、悲観値pi、分散σi2の間には次の関係がある。 ei=(oi+4mi+pi)÷6 (式-1) σi2=(pi-oi)2÷36  (式-2) 一般に平均と分散については加法定理が成り立つので、クリティカルパス上のn個の作業の総所要時間(n個の作業の所要時間の合計)Tの期待値eと分散σ2は次のように表される。 e=Σei  (式-3) σ2=Σσi2 (式-4) 中心極限定理により、Tは期待値e、分散σ2の正規分布で近似されるので、今、e=20、σ2=25であるとすると、・・・(と来て、Tの確率を求めるのですが、長くなるので以下省略します)。 ここで分からないのは、「中心極限定理により、Tは期待値e、分散σ2の正規分布で近似される」というところです。なぜ、いきなりこんなことが言えるのでしょうか。具体的に分からない点は次の(1)です。 (1)中心極限定理は、「平均μ、分散σ2の母集団から無作為にn個の標本を抽出してその平均値mを求めること」から始まる定理なのに、上記Tを求めた過程には、「平均μ、分散σ2の母集団」も「n個の標本の抽出」も「その平均値m」も、一切何もありません。一体これらは、上記Tにおいては、どこへ行ってしまったのでしょうか。

  • 統計入門書によると、中心極限定理に関して「もし、母集団が正規分布に従っ

    統計入門書によると、中心極限定理に関して「もし、母集団が正規分布に従っているならば、標本の大きさnの大小に関わらず、その平均の分布は正規分布」という記述があります。であるならば、母平均を区間推定する場合、zの値を用いて推定してもいいのかなと思いますが、ほとんどの書籍では、標本の大きさが小さい場合、tの値を用いて推定しています。なぜでしょうか?たぶん、自分がどこかで誤解をしているのだと思いますが、宜しくお願いします。

  • 中心極限定理 一様分布 平均値の意味

    統計学からの疑問です。 以前も中心極限定理について質問したことがあったのですが、また疑問が発生しました。 中心極限定理は、母集団が何分布であれ、そこからサンプリングされた標本の平均値は正規分布に従って分布するということで、この定理があるからこそ色んな統計手法を使うことができますよね。 例えば、プレス機の設定荷重を5.0トンに設定し、実荷重を複数回測定するとします。 この場合、実荷重は、4.9トンとか5.1トンとか、誤差的にばらつきますよね。 なので複数回測定した実荷重の平均値=プレス機の実力であると言えると思います。 では母集団が一様分布、例えばサイコロの場合、 サイコロを2個以上振って出た目の平均値は3.5ですが、この値は一体何を意味してるのでしょうか?サイコロは3.5の目がもっともよく出るというわけはありませんし・・・ 中心極限定理を解説するために、サイコロを使った説明があり、 母集団が一様分布であっても中心極限定理がちゃんと現れることは確認できたのですが、 母集団が一様分布の場合の統計量(平均値)の意味がわかりません。 変な質問かもしれませんが、疑問を解決したいのでどなたか教えて下さい。 よろしくお願いします。

  • 中心極限定理について

    中心極限定理についていろいろ調べたんですが、よくわからないことがあります。 (ほとんどの)任意の母集団(平均μ、分散σ^2)からn個の確率変数x1, x2, x3 .... xn を無作為抽出すると、平均値X を求めると、その平均値の分布は、nが大きくなると正規分布(平均μ、分散σ^2 / nの平方根)に近づく と書いています。 ある母集団分布をおいて、n = 6 として、 サンプル1: x1, x2, x3, x4, x5, x6 を抽出し、平均値 X1 を求める サンプル2: また、x1, x2, x3, x5, x6 を抽出し、平均値 X2 を求める サンプル3: また、x1, x2, x3, x5, x6 を抽出し、平均値 X3 を求める と同様に、やっていくのですよね? で、この「1回に抽出するデータがn」(上記では n = 6)であり、この nが大きくなると正規分布に近づくということなんですが、 サンプル数(平均値Xの数)はいくつを想定しているのでしょうか? サンプルが無限だったら、n = 2 だろうが、n = 100 だろうが正規分布のような気がするのですが。 いろいろなサイトで、 n = 1 や、n = 2 のケースでやったときの分布図が掲載されているのですが、これはサンプル自体の数が多いのでしょうか? n の意味と、サンプルの数(平均値Xの数) が混乱しているようです。 教えてください。

  • 分布と中心極限定理

    あらゆる〇〇分布はサンプル数が増えると正規分布になるという中心極限定理を習いました。 (たとえポアソン分布) ではなぜ〇〇分布は〇〇分布と定義されるのですか? 全部の分布が中心極限定理に従うならすべての分布が正規分布と定義されるべきだと思うのですが その境はどこでしてるのですか?

  • 中心極限定理と分布について

    中心極限定理により、不規則変数の加算によってできる不規則変数は、 平均値を中心に正規分布するようになるため z= y-6 は、平均:0、標準偏差:1の正規乱数となり、基本となる正規分布:N(0,1)と書く。 と書いてあるのですが、正規分布Nというのは山なりの感じの図でよろしいのでしょうか? 後これだけ見てz=y-6が平均0で標準偏差1というのもよくわかりません・・・ ノートを見てもzというのは書いてないのですが、数学関係でいう専門用語のzはなんでしょう。 また中心極限定理もよくわかりません、すいません・・・

  • 中心極限定理とパレート分布

    (1)所得はパレート分布もしくは対数正規分布をすると言われていますが、パレート分布においても、中心極限定理があてはまり、サンプリングを繰り返した時、正規分布するのでしょうか?もし、正規分布をするのであっても、母集団がパレート分布するはずの所得に対して、中心極限定理から導かれた分散、σ/√nを利用して所得の平均の信頼区間を推測することに違和感を感じます。大学の授業で先生が計算していました。 (2)所得の分布では、平均を見るよりも中央値の方が事実に近い結果を示すと言われていますが、平均(Σx_i/n)ではなく、期待値(Σx_i*P(X=x_i))で計算する方が、高額所得者に対しても低確率で重みづけられて、平均で計算するよりも妥当な値が得られそうなのですが、インターネットでも期待値で計算している例はありませんでした。統計学的に、このような計算をしない理由があれば教えてください。 初学者なので、間違いがあれば指摘していただけると幸いです。