- ベストアンサー
- すぐに回答を!
数列の問題です。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.2
- Mr_Holland
- ベストアンサー率56% (890/1576)
単純に、漸化式で n→n+1 の変換をして、ずれを戻せばOKですよ。 X(n)-2=-(1/2){X(n-1)-2}, n=2,3,4,・・・ ⇔X(n+1)-2=-(1/2){X(n)-2}, n=1,2,3,・・・ ← nをn+1に置き換える。 あとはいいですよね?
その他の回答 (1)
関連するQ&A
- 数学B 数列 センター向けの問題です
数列{xn}は x1=5,x(n+1)=xn+2 (n=1,2,3,・・・) で定義された数列である。 x2=7,x3=9 であり、 xn=2n+3 である。 次に、数列{yn}は y1=3,y(n+1)=yn+2n+3 (n=1,2,3,・・・) で定義された数列である。このとき yn=n^ア+イn Σ[k=1→n]yk=(1/6)n(n+ウ)(エn+オ) である。 さらに、数列{zn}を x1,y1,y2,x1,x2,x3,y1,y2,y3,y4,・・・ とし、この数列{zn}を x1|y1,y2|x1,x2,x3|y1,y2,y3,y4|・・・ のように、1個、2個、3個、4個、・・・と区画に分ける。すなわち、l=1,2,3,・・・として 第(2l-1)区画にはx1,x2,x3,・・・,x(2l-1) の項があり、 第2l区画にはy1,y2,y3,・・・,y2l の項があるように区画に分ける。 このとき、z199は第カキ区間のク番目の項であるから z199=ケコ である。また Σ[k=200→240]zk=サシスセ である。 解答 n^ア+イn=n^2+2n (1/6)n(n+ウ)(エn+オ)=(1/6)n(n+1)(2n+7) カキ=20 ク=9 ケコ=99 サシスセ=3815 この問題の解き方がわかりません 解き方を教えて下さい よろしくお願いします
- ベストアンサー
- 数学・算数
- 数列の問題についてです
数列anは初項a1から第n項までの和Snが、Sn=n+2anを満たしているとき、数列anの一般項を求めよ。 この問題での解答が写真です。 解答ではSn+1 -Sn = an+1 を使うことで求めていますが、 代わりにSn- Sn-1 = anを使って、n≧2とn=1に場合分けして解いてもよいのですか?
- 締切済み
- 数学・算数
- 数列の問題がわかりません(>_<)
数列の問題がわかりません(>_<) 数列{an}の初項から第n項までの和SnがSn=n・3のn乗で表されるときの一般項anを求めよ。 an=n・3のn乗-(n-1)・3のn-1乗 まではわかったのですが、その計算の答えがわかりません(涙) 途中式も一緒に教えて下さいm(__)m!!
- ベストアンサー
- 数学・算数
- 数列の問題なんですが…
「初項から第n項までの和S_nが、S_n=n^2-3n+1で与えられる数列の一般項a_nを求めよ」という問題なのですが、ノートに書いてある解き方は、S_n-S_(n-1)をしてa_nを求める、というものなんです。そしてそのa_nは2n-4(n>=2)となっているんです。 n>=2となっているということは、n=1はなりたたないんですよね。ということはこの数列の初項は一体いくつなんでしょうか…? 求め方を見てる限り階差数列…?とも思ったんですが、そこからどうにも考えが及びません。階差数列でも初項はn=1ですよね…。 宜しくお願いします。
- ベストアンサー
- 数学・算数
- 数列の問題
次の数列の問題の解答をお願い致します。 2つの数列{an},{bn}は、a1=5,b1=2で、 漸化式(n=1,2,3,…) an+1=4an-3bn bn+1=2an-bn をみたす。 a1=アイ,b1=ウ である。 数列{cn}をcn=an-bn(n=1,2,3,…)を定めると、 数列{cn}は cn+1=エcn をみたす。 よって、数列{cn}の一般項は cn=オ・カ^n-1 である。 また、pを定数とし、数列{bn}をdn=an-pbn(n=1,2,3,…)と定める。 すべての自然数nについて、dn+1=dnが成り立つのは p=キ/ク のときであり、このとき数列{dn}の一般項は dn=ケ である。 以上より、数列{an},{bn}の一般項は、それぞれ an=コ・サ^n-1-シ bn=ス・セ^n-ソ である。 さらに、数列{anbn}の初項から第n項までの和∑akbkは タ・チ^2n+1-ツテ・ト^n+2+ナニn+ヌネ となる。 アイ=14、ウ=8、エ=2までは解けたのですが、 以降、行き詰っています。
- ベストアンサー
- 数学・算数
質問者からのお礼
ありがとうございます! 分かりました! けっこう単純でしたね; もっと勉強します^^;