- 締切済み
- すぐに回答を!
行列式 クラメール 連立方程式の行列
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- info22_
- ベストアンサー率67% (2650/3922)
クラーメルの公式や行列や行列式の計算は教科書、参考書、ネット検索などに載っているはずですが、 何が分からないですか? 自分でできることは自力でやってください。行き詰って分からない場合は、そこまでの途中計算を補足に書いて、その先のどこが分からないかを質問して下さい。 解き方のヒント (1) これば次のURLの例 4.101に類似問題の解答が載っていますので真似てやれば解けるでしょう。 http://gandalf.doshisha.ac.jp/~kon/lectures/2006.linear-algebra-I/html.dir/node97.html (2) 単なる行列の計算なので自力でまずおやり下さい。 やってみてわからなければ、補足にやった計算過程を書いて質問して下さい。
関連するQ&A
- 行列の連立方程式 (mathematica)
mathematica4.1を使用して,行列で表した連立方程式を計算したいと思っています.例えば A= a11 a12 a13 a21 a22 a23 a31 a32 a33 B=b11 b12 b13 b21 b22 b23 b31 b32 b33 C,Dも同様に定義して A .x+B .y=1 C .x+D .y=0 x=x1 y=y1 x2 y2 x3 y3 のような連立方程式のx,yについて解きたいのですが,どのようにmathematicaで表現すればよいかが分かりません. どなたか教えてください.お願いします. 当然ではありますが,A,B,C,Dはすべて既知としています.
- 締切済み
- 数学・算数
- 連立二次方程式を解くには・・・
多変数の連立二次方程式を解きたいのですが, 何方かご教授いただけないでしょうか. (a1*x+b1*y)^2+(a1*z+b1*w)^2=E1^2 (a2*x+b2*y)^2+(a2*z+b2*w)^2=E2^2 (a3*x+b3*y)^2+(a3*z+b3*w)^2=E3^2 (a4*x+b4*y)^2+(a4*z+b4*w)^2=E4^2 条件として, 定数 a1,a2,a3,a4,b1,b2,b3,b4,E1,E2,E3,E4 (a1≠a2≠a3≠a4≠b1≠b2≠b3≠b4≠E1≠E2≠E3≠E4) 未知数 x,y,z,w (x≠y≠z≠wであり,有理数)です. 方程式4つに対して,式が4つあるので解けるとは思います. この方程式を解く方法として,外接球法を用いた方法を考えているのですが, イマイチ理解できないため,他にこの多変数の連立二次方程式を解く方法や近似解法などの計算方法がありましたら, 何方かご教授くださいますようお願いします. 計算方法だけでも教えていただいたら,あとは自分で調べます.
- 締切済み
- 数学・算数
- ルートを含む連立方程式に関して
こんにちは. 数学の問題を質問させてください. 分母にルートを含む連立方程式の解き方を悩んでいます. 次の3つの連立方程式で変数はx,y,zの3つでA,B,C,Pは任意の定数です. 1/{P+sqrt(x^2+y^2+z^2)}+1/{P+sqrt((x-1)^2+y^2+z^2)}=A 1/{P+sqrt((x+2)^2+y^2+z^2)}+1/{P+sqrt((x+1)^2+y^2+z^2)}=B 1/{P+sqrt(x^2+(y-2)^2+z^2)}+1/{P+sqrt((x-1)^2+(y-2)^2+z^2)}=C MaximaやMathematicaなどのソフトを使って,このまま計算させると常に「実行中」となり,解が求まりません. 手計算である程度,式を簡単にしようと式変形を試したのですが,有理化することもできず,ルートが計算の邪魔をします. このような連立方程式はどのように解けばいいのでしょうか? どなたか解法の手順をご存知の方がおられましたら,教えてください.
- 締切済み
- 数学・算数
- 行列と連立1次方程式
行列と連立1次方程式 連立1次方程式AX=Oの解 (1)連立1次方程式{ax+by=p⇔(a b)(x)⇔(p)⇔AX=Pと行列で表される。 cx+dy=q (c d)(y) (q) (1)の方程式で、P=Oのとき (2)方程式AX=Oは常にX=0を解にもつ (3)方程式AX=OがX=O以外の解をもつ⇔⊿(A) 解説 [1]A^-1が存在するとき AX=Oから、A^-1(AX)=A^-1O ゆえにX=O→解はx=y=0だけ [2]A~-1が存在しないとき すなわち ⊿(A)=ad-bc=0のとき,ad=bcであり、ax+by=0とcx+dy=0は、ともに定数項が0であるから同値となる。 教えてほしいところ 1.(3)の場合なんですが確かに、X=Oを解にもたないのでO以外と言えますが、O以外で必ず解をもつといえる理由を教えてください また、⊿(A)=0と同値であるといえる理由を教えてください。 2.ax+by=0とcx+dy=0は確かに定数項は0ですが、a=c,b=dかどうかわからないと同値とはいえないのでは??
- ベストアンサー
- 数学・算数
- 連立微分方程式の解き方について
Aの連立微分方程式 {y'₁(x)=4y₁(x)+2y₂(x) {y'₂(x)=2y₁(x)+3y₂(x) 初期条件 y₁(0) = 2, y₂(0) = 1 ↑ Aの連立微分方程式からまず行列を書くので |4 2| |2 3| ↑ と書きます。しかしここから固有値を求め、さらに固有値に対する固有ベクトル計算するとどうしても計算できなく、計算サイト(WolframAlpha)を使っても√を含む値が出てしまい、計算できなくなってしまいます。 問題を記載するにあたってタイピングミス等はありません。 誰か、わかる人教えてもらえないでしょうか? マジで解けなくてほんとに困っています。
- 締切済み
- 数学・算数
- 連立微分方程式 行列
この問題がどうしても分からないので数学のできる方お願いします。 Q.次の連立微分方程式を解け x'(t)= x(t) -y(t)+4z(t) y'(t)=3x(t)+2y(t) -z(t) z'(t)=2x(t) +y(t) -(t) この問題の前の問題で A=(1 -1 4) (3 2 -1) (2 1 -1)←行列 の固有値、固有ベクトル、Aの対角化、自然数nに対するA^n を求めたのですがここで使用するのでしょうか?
- 締切済み
- 数学・算数
- 連立方程式が解を持つ条件を行列を使って求める方法
x+2μy+λz=1 3x-μy+2λz=1 -2x+y+3λz=λ 上記の連立一次方程式が解を持つ条件を、行列を使って求める問題です。 μやλがなければ、 1 2 1 1 3 -1 2 1 -2 1 3 c として、解いていくのかと思いますが、 μやλがあることで、その後の変形をどうすればいいのか分かりません。 途中式も詳しく教えていただけると助かります。 何卒よろしくおねがいします。
- 締切済み
- 数学・算数
お礼
infoさんありがとうございます 手元に教科書の類がないのでとても助かりました。 計算がんばって見ます