• ベストアンサー
  • すぐに回答を!

三角比に躓いてます。教えて下さい。

三角比でシーターが90°までは理解できるのですが、三角比の拡張の分野で完全に躓いています。 まず、Θが90°を超えると、下の図のようになりますよね、そして 下の図のsinΘ、cosΘ、tanΘはそれぞれy,x,y/xでした。 これが理解できません。これは三角形XOPで考えてsinΘ,cos,tanを求めると書かれていたのですが、Θはその三角形の角度に含まれていませよね。なのにあたかも赤い部分がΘであるかのようにやっています。 赤い部分の角度がΘであるならば理解できます。 初歩的な質問かもしれませませんが、参考書を見てもここだけ理解できません。どうか助けてください

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • nag0720
  • ベストアンサー率58% (1093/1860)

三角比というと、確かに直角三角形の辺の長さの比として定義されていますが、それだと、角度は0°~90°の間でしか定義できません。 その三角比の定義を拡張して、0°~90°以外にも使えるようにしたものが三角関数です。 ご自身でも書いているように、原点から角度θの線を描いて単位円と交わる点の座標(x,y)が(cosθ,sinθ)となります。 これは、そうなるのではなく、そう定義されているのです。(tanθはsinθ/cosθで定義されます) そのように定義された三角関数は、0°~90°の間では三角比と一致します。(だから拡張なのです) 数学は、概念を拡張することによって発展してきた学問です。 掛け算は、最初は足し算の繰り返し(4×3は4+4+4)として習いますが、そのままでは分数や小数の掛け算には対応できないので、分数、小数を習うころには、掛け算の概念は拡張されます。 割り算も、最初は「÷3」は3つに分けるというように習いますが、これも分数、小数を習うころに、割り算の概念が拡張されます。 中学になれば、整数のべき乗(2乗、3乗)を習いますが、これも学年が上がれば、分数のべき乗(1/2乗、1/3乗)ができるように拡張されます。 三角比も同様で、最初は直角三角形の辺の長さの比として習いますが、それを拡張したものが三角関数です。 いつまでも三角比に拘らずに、拡張された三角関数で考えられるようにしましょう。

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1
noname#121811
noname#121811

「拡張した」というと判り難いかも知れません。図のように「定義し直した」と考えて下さい。前回の定義は忘れるのです。 このように再度定義すると、90度超の角度でも使えますし、これまでの90度以下の場合にも両方使えます。従来定義では疑問をお持ちのように90度以下しか使えません。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • この数学の疑問論理的に説明可能ですか??

    三角比でシーターが90°までは理解できるのですが、三角比の拡張の分野で完全に躓いています。 まず、Θが90°を超えると、下の図のようになりますよね、そして 下の図のsinΘ、cosΘ、tanΘはそれぞれy,x,y/xでした。 これが理解できません。これは三角形XOPで考えてsinΘ,cos,tanを求めると書かれていたのですが、Θはその三角形の角度に含まれていませよね。なのにあたかも赤い部分がΘであるかのようにやっています。 赤い部分の角度がΘであるならば理解できます。 初歩的な質問かもしれませませんが、参考書を見てもここだけ理解できません。どうか助けてください

  • 三角比の拡張

    三角比でsin,cos,tanを180°まで拡張するときに 半径1の半円でxやyを用いて定義づける意味が よくわかりません。 教えていだだけませんか。

  • 三角比について

    まだ三角比習いたてなのですが 既について行けなくなっています…(1対1、50分授業を2回やりました) 1回目の授業でsin,cos,tanの説明と sin(90°-θ)=cosθ…(他二つ) tanθ=sinθ/cosθ…(他二つ) を受けて 2回目は少し復習と 鈍角の三角比というところをやりました。 (半円上でのsin,cos,tanみたいな) 最初のほうで、自分の思っていたsinθやcosθが間違っていたという事に気づき、 それ以降は、そこが間違っていたので、全然分からず、30%ぐらいしか理解してないまま終わりました。 この塾での授業は10回程受けていますが 使っている教科書兼問題集みたいなのが 基礎学習のページとチェックテストのページがあり、 基礎学習のページは穴埋めで覚えていく感じなのですが、穴埋めの答えはページのすぐ下にありチラチラ見えて気になるのですが 大体、穴埋めしてみてと言われても分からないので、答えの数値を見て、そこから考えるという方法でしか穴埋めできていません。(9割方先に答えを見ています。ただ、その上でなんでその答えになるか分からない場合は、穴埋めせず、いろいろ考えて…という感じですが) ちなみにネット通信型の授業です。(Webカメラと手書きボードを通じての) で、今日ならった鈍角の三角比のところで 授業が終わった後、母と1時間近くあーだこーだやって やっと疑問が解けて、今日やった2回目の授業の事が8割近く理解できるところまでこれたのですが まだ分からないのが cos90°=0 cos180°=-1 tan180°=0 です。 母は文系で、ここら辺の単元は既に分かる範囲を超えているのですが 頭良いほうなので、私が使っている教材を見て、理解して、私に教えてくれるのですが、この部分は分からないみたいで。 その前のsin0°=0、cos0°=1というのはやっと理解できました。 直線と考えた場合、 その小単元?で使ってた図をもとに 半径rの三角形で考えて(その図は、90°以上のθで半円上で…って感じです) 授業の時に先生が言ってくれた高さ(図上でx)が無くなるから0って考えるというのが大まかに分かってた感じだったのが、母と話していて、きっちり分かりました。 高さが無くなるので、底辺と斜辺が一直線になって、だから、底辺も斜辺もrで sinは高さを含むから0で、cosは高さを含まない底辺と斜辺だから1 というのは分かりました。 ただcos90°以降のが母も私も図にすらかけない状態で… θ=0°の時(r,0) θ=90°の時(0,r) θ=180°の時(-r,0) という図は先生が説明してくださったのですが、座標という意味では、r,0や0,rなどは分かるのですが、 θが…という時という意味では分かっていなかったのかもしれません。 cos90°=0は0/r=0 cos180°=-1は-r/r=-1 tan180°=0は0/-r=0 の図の想像が全くつきません。 0/rが0になるとか-r/r=-1になるとかの、式は分かりますが cos90°が0/rとかは分かりませんし、図も浮かびません。 この三つの式について教えて欲しいです。 これは少し無駄話かもしれませんが 今回の授業で割り算までできなくなっていた自分に気が付いてショックで… 0÷8が0なのは分かるのですが、色々割り算とかやってて、tan(90°-θ)=1/tanθの検算してる時に 8÷0が分からなくなってしまって…。分からないというよりも忘れてしまったんでしょうが、 思い返してみれば小学校の頃も割り算で後に0がくるのはいっつもその時思った答えを書いてました。(答え8の時もあれば0の時もある感じで…) 三角比でも sinやcos,tanの意味を理解するのにかなり時間がかかりました。

  • 高校1年生の三角比について質問です。

    高校1年生の三角比について質問です。 90°+θの三角比の公式 sin(90°+θ)=cosθ cos(90°+θ)=-sinθ tan(90°+θ)=-1/tanθ これがなぜ成り立つのか考えてみても分かりません。図をみても分かりませんでした。分かりやすく教えていただけると嬉しいです。よろしくお願いします💦

  • 高1です。三角比の・・

    三角比のsin.cos.tan.なんですけれども 角度の前についてるんですけど、この記号は一体何を意味するんですか? ついている意味が分からないので教えてもらえればと思います。

  • 三角比の相互関係の問題が分かりません。

    数学の三角比の相互関係の問題が分からないので教えてください。 問題は ☆0°≦θ≦180°で、cosθ=-1/4のとき、sinθ=X、tanθ=Yである。 と ☆0°≦θ≦180°で、tanθ=-2√2のとき、sinθ=M、cosθ=Nである。 このX、Y,M,Nを求めよ という問題です。 よろしくお願いします。

  • 鋭角の三角比

    次の三角比を鋭角の三角比で表しなさい 1 sin140° 2 cos105° 3 tan130° 1は180-140=sin40° 2は180-105=cos75° 3は180-130=tan50° これであってるでしょうか?

  • 三角比の疑問

    K塾の先生が三角比とは、直角三角形の直角ではない、2つの内角の内の1つをθ1(θ2は気にしないで)とおくよ。 この角度θ(0°<θ<90°)に対して、3つの三角比:sinθ,cosθ,tanθを定義するんだよと言っていたのですが僕にはこの説明が理解できません。 この説明がどうしても理解したいです。 具体例を上げて、この説明を噛み砕いて教えてくれませんか??

  • 三角比について。

    三角比について。 よく理解していない者が質問するので分かりにくいかと思いますが・・・。 角0°と角90°に関するsin,cos,tanについてなのですが、 まず一つ目に、角0°と角90°の図形は、それぞれ線分と四角形になってしまい、三角形ではなくなってしまうのではないでしょうか? 次にsin0°=0、cos0°=1、tan0°=0、sin90°=1、cos90°=0、tan90°=無し という値らしいのですが、 何故「1」や「0」という値が出るのか、「0」と「無し」というのは何が違うのか、という疑問が沸きました。 分かる方、よろしくお願いいたします。

  • 三角比の90°+θの公式の意味がわかりません

    sin(90°+θ) = cosθ となるのはθの時のx座標が、(90°+θ)のy座標と同じ数値になるため cos(90+θ)=-sinθになるのはθの時のy座標が(90+θ)のx座標と同じになるため この時(90+θ)は第二象限のx座標だからマイナスになっている。 ここまではまだわかるのですが tan(90°+θ)= -1/tanθ  というのは意味がわかりません。 tanというのはy/xのことではないのですか? 参考書に図は載っているのですが この図がなにを意味しているのか理解できません。 よろしくお願いします。