• ベストアンサー

固有値、転置行列の問題

n行n列の行列Aについて 転置A = A A^2 = A のとき 固有値は 0か1になることを示したいのですが、 tは任意の実数で 行列式 | A - tE | = 0 を使って解こうとしてみたり、 Aを対角化しようとしてみたりしましたが、解き方がわかりません。 方針だけでも良いの教えてください。

  • fugur
  • お礼率30% (4/13)

質問者が選んだベストアンサー

  • ベストアンサー
  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.1

転置は、関係ないのでは? A の固有値 t に対する 固有ベクトルを x とすると、 A~2 = A より、0 = (A~2 - A)x = (t~2 - t)x。 x ≠ 0 だから、t~2 - t = 0。

関連するQ&A

  • 行列の固有値問題

    以下の証明はどのように行えばいいのでしょうか。 n次多項式f(s)=a(n)s^n + a(n-1)s^(n-1) + ・・・・ +a(1)s + a(0)とする。 行列A(n×nの正方行列)の固有値がλ1、λ2、・・・、λnであるとき、行列多項式f(A)の固有値はf(λ1)、f(λ2)、・・・、f(λn)であることを、任意のn次正方行列は適当な正則行列QによってQ^(-1)AQが下三角行列になるようにできることと、下三角行列の固有値は対角成分になることを用いて示せ。 という問題です。分かりにくくてすいません。 行列多項式というものが初めて目にする言葉ですし、方針が立ちません。 よろしくお願いします。

  • 固有値

    この問題がまったく何を言っているのかわかりません。。固有値は|A-λE│=0の固有値方程式を解いて、固有値λを求めればいいんですよね?参考書などを見れば言葉で書いてあるだけで詳しい解きかたが書いていません。どうかできるだけ計算過程も詳しく教えてください。できれば(1)と(2)だけでも結構です。お願いします。 行列Aの固有値と対角化を以下の手順で考えていこう。    0 1 0  ( 1 0 0 )    0 0 0 (1)行列Aの固有値を求めなさい。数量の検算には、固有値の和が行列Aのトレースに等しいことに注意せよ。 (2)固有値に属する固有ベクトルを求めなさい。 (3)行列Aの固有ベクトルを列ベクトルとして任意の順に並べて作った行列Pを示しなさい。 (4)行列Aはこの行列Pによって対角化可能であるかどうかどうか調べなさい。 (5)行列Pの転置行列tPを示し、行列Pとの積tPPを計算しなさい。 (6)行列Aが行列Pによって対角化可能であるならば、対角化されることを示しなさい。

  • 複雑な行列式から固有値を求める

    こんばんは!固有値が求められないので質問させていただきました。 |α 0 β 0 0 0| |0 α β 0 0 0| |β β ω 0 0 β| |0 0 0 α 0 β| |0 0 0 0 α β| |0 0 β β β ω| という6行6列の行列があります。 行列全体をβで割って(α-λ)/β=X(λ:固有値) などとおければ、簡単に固有値が求められそうな行列なのですが、 3行3列目と6行6列目にωがあることによって、対角成分の計算を綺麗に行えません。誰か良い方法がありましたら、よろしくお願いします。

  • 固有値の求める順番?

    3×3行列Aについて A= |0 1 1| |1 0 1| |1 1 0| を対角化せよという問題で まず Φa(t)= |-t 1 1| |1 -t 1| |1 1 -t| より固有値はλ=-1(重解),2 となります。 このあとなのですが、固有ベクトルを求めるときにどちらから先に求めればいいのでしょうか? 実は先にλ=-1の固有ベクトルを求めると A+E= |-1 1 1| |1 -1 1| |1 1 1| = |1 1 1| |0 0 0| |0 0 0| α,β(≠0)として x=αt[-1 1 0] + βt[-1 0 1](tは転置行列を表しています。) 同様にλ=2のときにはγ(≠0)として x=γt[1 1 1] 以上から固有空間は V(-1) = {αt[-1 1 0]}+{βt[-1 0 1]} V(2) = {γt[1 1 1]} dimV(-1) + dimV(2) = 3であるから対角化可能で 固有ベクトルを列にもつ行列をPとして P= |-1 -1 1| |1 0 1| |0 1 1| しかし答えには先に固有値λ=2の固有ベクトル先に求めて x = αt[1 1 1] x = βt[-1 1 0] + γt[-1 0 1] として対角化を P= |1 -1 -1| |1 1 0| |1 0 1| となっているのですが、自分の求めた方法では答えは間違っているのでしょうか? 固有空間から対角化するプロセスが間違っているのでしょうか?

  • 行列固有値問題

    Aは、3×3行列で、3つの固有値のうち2つが同じ(1組が重解)で、もう一つが異なる解、つまり固有値λ1、λ2、λ3で λ1=λ2 λ3≠λ1 の場合、 Aが対称行列ではないもの具体例を示して下さい。また、その具体例の行列を対角化する行列Pも示して下さい。 この時、求める最小多項式は重解はないものとします。 つまり、(A-λ1E)(A-λ3E)=0 をみたし、 対角化した行列は、λ1=λ2、λ1≠λ3で [λ1 0 0] [0 λ2 0] [0 0 λ3] になります。 このようなAでなおかつ対称行列でないものをあげて欲しいのですが、存在しますか? 対称行列だったら、いくつか列があったのですが、そうでない具体例が知りたいのです。

  • 行列の証明問題 (固有値と固有ベクトルの性質)

    行列A=[a(jk)](j:行 k:列 )に関する諸命題を証明し、適当な例を用いて説明せよ。 ただし、λ(1),・・・,λ(n)はAの固有値とする。I:単位行列 (a)実固有値と複素固有値  Aが実行列のときには、その固有値は実数または共役複素数の対からなる。 (b)逆行列  逆行列A^(-1)は0がAの固有値でないとき、またそのときに限り存在する。  その固有値は1/λ(1),・・・,1/λnである。 (c)トレース  Aの対角成分の和をトレースまたは対角和という。これは固有値の和に等しい。 (d)スペクトル移動  行列A-kIは固有値λ(1)-k,・・・,λ(n)-kをもち,Aと同じ固有ベクトルをもつ。 (e)スカラー倍、ベキ  行列kAの固有値はkλ(1),・・・,kλ(n)であり、行列A^m(m=1,2・・)の固有値は  λ(1)^m,・・・,λ(n)^mである。固有関数はいずれもAの固有関数と同じである。 (f)スペクトル写像定理  ’多項式行列’  p(A)=k(m)A^m+k(m-1)A^(m-1)+・・・+k(1)A+k(0)I は固有値    p(λj)=k(m)λj^m+k(m-1)λj^(m-1)+・・・+k(1)λ(1)^(m-1)+k(0) (j=1,・・・,n) をもち、Aと同じ固有関数をもつ。 (g)ペロンの定理  正の成分l(12),l(13),l(31),l(32)をもつレスリー行列Lには1つの正の固有値が  存在することを示せ。 これらの問題(証明)が難しくて分かりません。教えて下さい、お願いします。

  • 固有値の数と行列

    固有値の数と行列には何か関係がありますか? 三行三列の行列を対角化するには三つの固有ベクトルが必要ですよね。そのとき三つでてくるためには何か条件とかいりますでしょうか?

  • 3×3行列の固有値と固有ベクトル

    以下の行列Aの固有ベクトルを求めようとしているのですが,解を見つけられないでいます. 2 1 0 1 2 0 0 0 -2 計算を進めた結果,固有値λは3,1,-2となり,λ=3,1に対応する固有ベクトルはそれぞれ[1,1,0]t,[1,-1,0]tとなったのですが,λ=-2の場合で求めた固有ベクトル[1,1,k]t(kは任意の実数)がAx=λxに対応しない値になってしまいます.私の計算に何か問題があるのでしょうか? また,行列Aは対称行列なのでそれぞれの固有ベクトルの内積は0になると思うのですが,固有ベクトルの値が得られないことと何か関係があるのでしょうか? 回答よろしくお願いします.

  • 行列の問題

     N行N列の行列A   行列Aの成分は成分を(行,列)で表すと、(1,1)=(N,N)=2、(1,2)=(1,N)=(2,1)=(N,1)=(N-1,N)=(N,N-1)-1  この行列の固有値と固有ベクトルを求めたいのですが、どうすればいいかわかりません。どなたか教えてください。

  • 行列の問題が解けません。計算間違いや思考の間違いがあればご指摘お願いし

    行列の問題が解けません。計算間違いや思考の間違いがあればご指摘お願いします。 行列A [-3 -1 -5] [1  1  1] [3  1  5] を対角化するための行列を求めようとしようとしています。 Aに関しては、Ax=txとおき、tを対角行列、xを固有ベクトルとすると、 (tE-A)x=0と変形できるため、x≠0であるためには、 |tE-A|=0が条件になります。 これを解くと、t=0,1,2が得られます。 3次正方行列において、3つの異なる固有値が得られたため、 行列Aは対角化可能です。(前提1 この前提が間違っている?) P^-1・A・P=B (前提2:Bは対角行列、P,P^-1は正方行列) となるようなPの条件は、 (tE-A)=0を満たす行列の組み合わせ、すなわち、固有値0の時のa(1,1,-1),固有値1の時のb(1,1,-1), 固有値2の時のc(1,0,-1)(※a,b,cは任意の数)の組み合わせです。 ところが、これらの組み合わせでできる、例えば 行列C: -1 1 1 1 1 0 1 -1 -1 は正方行列ではなく(rankC=2)、C≠Pです。 そのため、行列Aを対角化することができません。 前提1,前提2のどちらかが間違っているのでしょうか。 それとも、計算をどこか間違えているのでしょうか。 求めたいのは、行列Aを対角化する行列Pです。 どなたか、よろしくお願いいたします。