• ベストアンサー

二項係数を用いたテイラー展開

実数αに対し (1+x)^α=Σ【n=0→∞】 (α) (n)* x^n (|x|<1) ここで、一般化された二項係数は以下で定義されている。 (α) (n) ={α(α-1)(α-2)…(α-n+1)}/n! こういった公式があるのですが、これは具体的にどのように用いればいいのかわからないので、この公式をつかった、適当な具体例を見せていただけると嬉しいです。

質問者が選んだベストアンサー

  • ベストアンサー
  • proto
  • ベストアンサー率47% (366/775)
回答No.1

例えば、√(1+x)=(1+x)^(1/2)を展開すると   √(1+x) = 1 +(1/2)x -(1/8)x^2 +(1/16)x^3 -(5/128)x^4 +... となる。 具体例ってこんな感じでいいんでしょうか? ちなみにαが自然数のときにこの方法で(1+x)^αを展開すると、結果は二項定理で展開した場合と同じになる。 その意味でこれは二項定理の拡張と見なす事が出来る。 さらに蛇足だが、「二項係数を用いたテイラー展開」ではなく「テイラー展開を用いて再定義された二項係数」が正しいかと。

関連するQ&A

  • テイラー展開について教えてください。

    テイラー展開に関する問題です テイ ラー展開に関する問題です。 (1)以下の関数のx=0を中心としたテイ ラー展開をし、一般項を書け。 (i)cosx (ii)1/(1-x) (2)x=0を中心とした1/(2-x^2)のテイラ ー展開をし、一般項を書け。 (3)x=0を中心とした(cosx)/(2-x^2)のテ イラー展開をx^6の項まで求めよ。 (4)lim[x→0](1/x^4){(cosx/(2-x^2))-(1/2)}を求めよ。 以上です。 自分でも求めたのですが、あってい るかが分かりません。 確認お願いします。 (1)(i)cox=Σ[n=0→∞]((-1)^n)(x^(2n))/(2 n)! (ii)Σ[n=0→∞]x^n (2)1/(2-x^2)のテイラー展開は自信が ないのですが、これをテイラー展開 の式に代入して求めていくとすごく 時間がかかるので、 1/(2-x^2)=(1/2){1/(1-(x^2/2))}と変形し 、(1)の(ii)と同じようにして、Σ[n=0→ ∞](1/2)(x^2/2)^nとなりました。 果たして、これでいいのでしょうか ? (3)たぶんこれは(1)と(2)の結果を使え ということだと思うのですが、これ は(cosx)と1/(2-x^2)のそれぞれの項を かければいいだけですか? たとえば、1項は、cosxの1項目の1 と、1/(2-x^2)の1項目の1/2をかけて 、1/2となるのでしょうか? (4)これはちょっと分からないです。1 /x^4がかかっているので、テイラー 展開したものでも分母にxの項が入っ てしまい、発散しそな気がしたので すが、そんなはずはないので、よくわからないです 回答よろしくお願いします。

  • 多項式展開

    任意の実数αに対して (α,n)=1 (n=0),α(α-1)・・・(α-n+1)/n! (n=1,2,3・・・) とすれば (1+x)^α=Σ[n=0,∞](α,n)x^n  (|x|<1) が成立する。 このとき、 x(1+x)/((1-x)^4)=(1+x)^α=Σ[n=0,∞]a(n)・x^n  (|x|<1) と展開したときの係数a(n)を求めよ。 という問題なのですが、いくつかわからないところがあって、 最初の定義式はいわゆる二項展開のことですよね?なぜわざわざ|x|<1なんていう条件がついてるのでしょうか?ただ単に問題を解きやすくするための付加条件なのでしょうか? 問題の解答の方針としては(1+x)をα=1,(1-x)^4をα=4 x=-xみたいな感じにして最初の定義式に代入しちょこちょこっと計算するのかなと思ったのですが、うまくできません。どのような方針で解けばよいのでしょうか?

  • 積分を含んだ数列、もしくはテイラー展開の利用

    区間 -1<x<1 のすべての実数xについて (1+x)^(1/2) - 1 = Σ(n=1->∞) a(n) * x^n が成り立つような数列 a(1),a(2)の第3項 a(3)とa(4)を求めよ a(1)=( (1+x)^(1/2) - 1 )/ x ですが、次から躓いています

  • log(x+1)のテーラー展開の余剰項

    log(x+1)のテーラー展開の余剰項 {(-1)^(n-1)*x^n}/{(1+θx)^n*n}が、-1<x<1 , n→∞ の時、0に集束することの証明で、 -1/2<x<1では、証明できるんですが、-1/2>xの証明がうまくいきません。 どなたか、ヒントをください。

  • 二項展開

    lim (1+1/n)^n^2 n→∞ を求めるにあたって、二項展開して (1+1/n)^n^2=1+n^2×1/n...>1+n としてから計算するとなっているんですが、 「二項展開をして」というところがわかりません。 二項定理を使うんですか? でも、n^2のところはどうするんだろう・・・ 誰か教えてください (^_^;)

  • テーラー展開(マクローリン展開)について

    テーラー展開についての質問です。 問題=============================================== 1/cos x のx=0を中心とするテーラー展開を4次の項まで求めよ。 =============================================== この問題の解答例として、以下のような解説があったのですが、 わからない点が有ります。 <解答例> cos x のマクローリン展開は、 cos x = 1 - x^2/2! + x^4/4! + … ( |x| < + ∞)であるから、 1/cos x = 1/( 1 - x^2/2! + x^4/4! + …) ここで、  1/(1 - x) のマクローリン展開が Σ{n=0→+∞} x^n で与えられるので、 これを利用して、 1/cos x = 1 + (x^2/2! - x^4/4! +…) + (x^2/2! - x^4/4! + … )^2 + …      ー(1) = 1 + x^2/2 + 5x^4/25 +…     ー(2) となる。 ここで疑問なのは、 1/(1 - x) のマクローリン展開は、|x|<1 の条件が成り立つ時に限り収束するので、 適用できるわけじゃないですか? (1)から(2)のような形にする場合に、 |(x^2/2! - x^4/4! +…)| < 1 となっていないのに、このような展開をしてもいいのでしょうか? 具体的には、cos x は xの値によって -1 <= cos x <= 1 まで取り得るので、 cos x のマクローリン展開の初項が1ということは、 それ以下の項の和がxの値次第で -2程度になることも考えられると思うので このような展開をしてはいけないと思うのです。 当方 テーラー展開についてよく熟知していないため、 ご指導お願いします。

  • 一変数テイラー展開の一般項

    お気に入り f(x)=log(x+√(1+x^2))とするとき、x=0におけるテイラー展開をしました。f(x)を微分していくと f'(x)=1/(x^2+1)^(1/2) f''(x)=-x/(x^2+1)^(3/2) f'''(x)=(2x^2-1)/(x^2+1)^(5/2) f''''(x)=-3(2x^3+3x)/(x^2+1)^(7/2) f'''''(x)=3(8x^4-24x^2+3)/(x^2+1)^(9/2) f''''''(x)=-15x(8x^4-40^2+15)/(x^2+1)^(11/2) f'''''''(x)=45(16x^6-120x^4+90x^2-5)/(x^2+1)^(13/2) となりました。これをマクローリン展開の公式に代入すると f(x)=x-(x^3)/6+(3x^5)/40-(5x^7)/112…剰余項 となりました。 一般項を求めたいのですが、 f'(x)=1/(x^2+1)^(1/2)のときx^2=tと置き、 g(t)=(t+1)^(-1/2)としました。 g(t)についてn回微分し g(n回微分)(t)=(‐1)^n*(((2n-1)!!)/2^n)*(1+t)^-((2n-1)/2) となりました。 g(t)についてt=0の時テイラー展開したところ g(t)=1-t/2+3t^2/8-5t^3/16+…+((‐1)^n*(((2n-1)!!)/2^n))/n!+Rt となりました。 f'(x)=g(x^2)なのでg(t)のテイラー近似にx^2を代入したものがf'(x)のテイラー近似になることはわかりました。 しかしf(x)とf'(x)のテイラー近似は 数式的にはf(x)=∫f'(x)dxになると思いますが、 それには証明が必要になると言われました。また、gとfの関係をはっきりさせ、g(t)のテイラー展開からf'(x)のテイラー展開を求め、 それがf'(x)のテイラー展開と一致することからf'(0)、f''(0)…をもとめ、それを用いてf(x)のテイラー展開を書けばよいらしいのですが、 どのようなステップを踏めば良いか分かりません。 お力をお貸しください。

  • 二項係数に関する問題です

    (x+y)^nの展開式における6項目は112、7項目は7、8項目は1/4であるとき、x、y、nの値を教えてください。 二項係数に関する問題ということはわかるのですが、二項定理をどう使えば答えにたどり着くのかわかりません。宜しくお願いします。

  • 2項係数の上限

    こんにちは。興味本意で2項係数の上限を証明したいと思ってるのですが、うまくいきません。一応スターリングを使うのかなと思ったのですが、それでもうまくいきません。もしお分かりの方がいらっしゃいましたらご教授ください。証明するものは、 Binomial[n,k] <= 2^n /(Sqrt[Pi/x] * Sqrt[n] )です。 ここでBinomial[n,k]は2項係数を示し、 Sqrtは、平方根を示します。 Piは Πです。

  • 展開して係数を求める。

    (x-2)^4÷2(x-2)^3+3(x-2)^2÷4(x-2)を展開したとき、x^3の係数、x^2の係数、xの係数と定数項を求めよ。 解き方教えてください。。。 お願いします。