• 締切済み

ゴールシークで解けますか?

陰関数方程式、 F(X, Y)=0、 で表される式の解をゴールシークで求めることをしています。Yの確定値とXの初期値を入れてF(X, Y)=0を満たすXを求めているわけです。とても重宝しています。 今回は、 F(X, Y)=0 と G(Y, Z)=0 の二つの陰関数からなっていて、Zの確定値からX(初期値を与えて)を求めたいのです。この場合、YはFとGをとりもつ変数となっています。 これはゴールシークでできるのでしょうか? できない場合、どのようなソフトで可能かお教えください。

みんなの回答

  • chiezo2005
  • ベストアンサー率41% (634/1537)
回答No.2

#1です。 もちろん1未知数の解は陰関数の状態でゴールシークで解けますが, 未知数が2個以上のものはできないという意味です。 最近のパソコンの強力なCPUでは1変数の場合にはおよそどんな関数でも, 力ずくで2分法などを用いれば大して時間もかからず解けますが, 変数が2以上になるととたんにアルゴリズムは難しくなります。 手法に興味があれば以下のページなど参考にしてください。 http://dse.ssi.ist.hokudai.ac.jp/~onosato/EDUCATION/sec06.pdf

tmoritani
質問者

お礼

ありがとうございました。 なんとか解くことができました。

全文を見る
すると、全ての回答が全文表示されます。
  • chiezo2005
  • ベストアンサー率41% (634/1537)
回答No.1

ゴールシークという名前からエクセルの話ですよね? ゴールシークでは陽に書かれている関数でないと難しい(たぶんできない)と思います。 エクセルでやるならソルバーを使う手があります。 http://office.microsoft.com/ja-jp/excel/HP051983681041.aspx ソルバー自身は多変数の最適化のためのプログラムですが,このような 方程式の解を求めるのに使うことができます。 ご質問のような場合には Qx(Y,Z)=F(x, Y)^2+G(Y, Z)^2 という関数を導入して, このQxを最小にするY,Zを求めることとX=xのときの F(X, Y)=0 と G(Y, Z)=0 の解を求めることは等価です。

tmoritani
質問者

補足

さっそくのコメントをありがとうございました。 そうです。EXCELの話です。 ソルバーをさっそく試します。結果がでたら報告いたします。 ところで、ゴールシークですが、多次元方程式や超関数が入っているような方程式の場合、つまり F(X,Y)=0 のようなものを何回も問題なく解いてきました。ゴールシークというのはそのような目的のものと理解しています。 具体的には、ゴールシークの入力欄で    数式入力セル ー 上の F(X,Y)のセル    目標値(Y) ー 0    変化させるセル ー Xの初期値を入れる Xの初期値の値が収束値からかけ離れていると収束せずに答えが得られませんが、普通おおよその値は推定できるので問題なく解が得られます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • エクセルのゴールシークについて

     エクセルのゴールシークについて質問します。  実際に解が存在するにもかかわらず、計算式・目標値の条件によっては、解が求まらない場合があります。  私の場合、以下の計算を実行しましたが、解が求まりませんでした。 =SIN(ATAN(1/1500))-0.02^2*2000^2/(2*α+100)^(4/3)/(100*α)^2 変数>α 目標値>0.0 他の目標値では解が求まりました。  解決方法が分かれば教えてください。  よろしくお願いします。

  • この式の計算の仕方

    f=0.1x^3+0.05x^2-3 g=2-0.5/e^x ただしeは自然定数です。 f=gとなるような方程式の解をソルバー法やゴールシーク法でもとめたいのですが、どのように入力すればよいのかが全く、分かりません。どなたか教えていただけませんか?よろしくお願いします。

  • 多変数の陰関数定理について

    こんにちは。f(x,y,z)=0,g(x,y,z)=0という2つの方程式であらわされる曲面で、y=φ1(x),z=φ2(x),という陰関数がある点の近傍において存在するためには、その点でfy×gz-fz×gy=/=0( fyはfをyで偏微分という意味で=/=0は0でないという意味です。)が成り立たなければならないのはなぜですか?おしへてください。    

  • 大至急お願いします!解析の問題です!!!!

    大至急御願いします!解析の問題です!!!! 分かる範囲でいいので、なるべく詳しくお願いします! 1問でもかまいません!よろしくお願いします! 1. (1)R^2のノルム||・||を一つ選んで、その選んだノルムの定義を記せ。 (2)pを正の定数とし、B={y^→(yベクトル)∈R^2;||y^→||≦p}とおく。 ある定数M>0が存在し、任意のy^→=(y1),z^→=(z1)∈Bに対して (y2) (z2) |y1^2-z1^2|≦M||y^→-z^→||,|y2^2-z2^2|≦M||y^→-z^→||,|y1y2-z1z2|≦M||y^→-z^→|| が成り立つことを示せ。 (3)Iを有界閉区間とし、a(x),b(x),c(x),d(x)はI上の連続関数とする。R^3の領域 E=I×B={(x,y^→);x∈I,y^→∈B} において、微分方程式 (y1)´=(a(x)y1^2+b(x)y2^2) (y2) (c(x)y1y2+d(x) ) の解は、I×B内に任意に与えられた初期条件に対して一意的に存在することを示せ。 (4)前問の微分方程式について、 I×R^2={(x,y^→);x∈I,y^→∈R^2} においても初期条件に対する解の一意性が成り立つことを示せ。 2. IをRの区間とする。f^→(x,y^→)はI×R^nの連続関数とする。 微分方程式y^→=f^→(x,y^→)については、初期条件に対する解の一意性が成り立つと仮定する。 (1)I×R^n上で||f^→(x,y^→)||が有界であるとき、この微分方程式の任意の解はI全体に延長可能であることを示せ。 (2)ある定数M>0が存在して、I×R^n上で ||f^→(x,y^→)||≦M√||y^→|| が成り立つとき、やはりこの微分方程式の任意の解はI全体に延長可能であることを示せ。 3. 微分方程式(y^→)´=f^→(x,y^→)について、初期条件に対する解の一意性が成り立っているとする。 この微分方程式の、初期条件y^→(a)=b^→をみたす極大延長解を p^→(x,a,b^→)で表し、その定義される区間をIとする。このとき、任意のa1∈Iに対して、 p^→(x,a1,p^→(a1,a,b^→)=p^→(x,a,b^→) (任意のx∈I) が成り立つことを示せ。 よろしくお願いします!!!!!

  • 高校数学、整数解をもつ不定方程式

    (問題) 7x+9y-8z=-7((1)) 3x+2y-6z=-8((2)) (解答)(1)×3-(2)×4より、9x+19y=11((3)) x=-3、y=2は(3)の整数解の1つだから、(3)⇔9(x+3)=-19(y-2) よって、kを整数として、x=-19k-3、y=9k+2((4)) (4)を(1)に代入して、7(-19k-3)+9(9k+2)-8z=-7⇔13k+2z=1 k=1、z=-6はこの方程式の整数解の1つで、13(k-1)=-2(z+6) よって、mが整数のとき、k=-2m+1、z=13m-6。 k=-2m+1を(4)に代入して、x=38m-22、y=-18m+11、z=13m-6(mは整数) (疑問) この問題の方針は2つの方程式から1つの文字を消去した方程式(2文字)を作り、その方程式を満たす解を求め、その解を元の方程式の1つに代入し、3つの解を求める。というものです。 方程式(3)を満たすxとyはすべて、(1)と(2)を満たすのですよね? にもかかわらず、(4)で、k=0としたx、yは(1)を満たしません。(z=1/2となって、整数にはならない) また、今回この問題の疑問について、他の参考書で調べたところ、次の事柄が載っておりました。 (参考書)加減法の基本原理 (1)F(x,y)=0かつG(x,y)=0⇒aF(x,y)+bG(x,y)=0 (2)F(x,y)=0かつG(x,y)=0⇔F(x,y)=0かつaF(x,y)+bG(x,y)=0 (1)について、なぜ逆(aF(x,y)+bG(x,y)=0⇒F(x,y)=0かつG(x,y)=0)は成り立たないのでしょうか? aF(x,y)+bG(x,y)=0は点(X、Y)を通る直線群を表しますから、この(X、Y)はそれぞれa=1かつb=0,a=0かつb=1としたF(X,Y)=0とG(X、Y)=0を成り立たせるのではないでしょうか?

  • 1階線形偏微分方程式の一般解

    数学のことでちょっと皆様のお知恵を拝借いたしたく質問します。 次の偏微分方程式の一般解の求め方を教えてください。 ∂T(x,t)/∂t + (q(t)/S)(∂T(x,t)/∂x) = c(T_w(x,t) - T(x,t)) c,S:定数 僕の所有する参考書によるとこの種の方程式は ラグランジュの偏微分方程式と呼ばれていて、 ちょっとだけ一般解の求め方が書いてありました。 しかし、どうしても一般解にたどりつけません。 その方法とは、偏微分方程式 P(x,y,z)(∂z/∂x) + Q(x,y,z)(∂z/∂y) = R(x,y,z) に対して連立補助方程式 dx/P = dy/Q = dz/R を解いた解を f(x,y,z) = a, g(x,y,z) = b (a,bは積分定数) とする。φを任意の関数として、一般解は  φ(f,g) = 0 である。 という解法です。しかし、T_wが邪魔でうまくいかないです。 詳しい参考書を手に入れようにも近くに本屋がないのでお手上げです。 どなたかご教授お願いしますm( _ _ )m

  • ビブンセキブン~いい気分

    z=f(y-x)+g(y-x) からf,gを消去して偏微分方程式をつくれ。という問題で、 私の出した答えは ∂z/∂x= -f '(y-x)-g '(y-x) ∂z/∂y= f '(y-x)+g '(y-x) f '(y-x)とかは(y-x)に関する導関数という意味。 だから ∂z/∂x + ∂z/∂y=0  という答えを出したんだけど、解答を見ると (∂^2/∂x^2)z - (∂^2/∂y^2)z =0 になっているんですよね。  確かに2階微分でも問題を満たしているけど、なぜ1階微分の私の解答じゃないの?それだったら、 (∂^3/∂x^3)z + (∂^3/∂y^3)z =0 とか4階微分とかでも答えになるじゃん?   だれか教えてくんさい。 出展はサイエンス社 演習微分方程式(あの有名な黄色いシリーズ)のP4からです。

  • 専門的な質問ですみません。数学の問題なのですが、

    専門的な質問ですいません。数学の問題なのですが…。 問:微分可能な実数値関数f(x)、g(x)が、次の3式、 f(x+y)=f(x)g(y)+f(y)g(x)  g(x+y)=g(x)g(y)-f(x)f(y) {f'(0)の二乗}+{g'(0)の二乗}=1(すみません二乗が変換できませんでした) を満たすとき、f(0)=0、g(0)=1をまず示し、次に、 g'(x)=g'(0)g(x)ーf'(x)f(x) f'(x)=f'(0)g(x)+g'(0)f(x)を導いた後、 連立微分方程式 g'(x)=-f(x)、f'(x)=g(x)が成り立つことを示し、それらの初期値問題 f(0)=0、g(0)=1の解が、  f(x)=±sinx g(x)=cosx  となることを証明せよって言うんです。微分方程式の解の存在と、一意性に関する定理を直接利用してはだめだと言われました。 どなたか助けてください。お願いします。 

  • 陰関数定理

    x,yに関する連続な関数 z=f(x,y) がz0=f(x0,y0)となる点(x0,y0,z0)付近でx,yについて陰関数定理を満たしているとする,即ちこの点周辺で∂f/∂x・∂f/∂y≠0で∂f/∂x,∂f/∂yは共に連続とした場合,∂y/∂x,∂x/∂yの値はどうなるのか教えて下さい。 考えてみたのですが F(x,y,z):=f(x,y)-z=0 と置き,条件より陰関数定理が成り立つので y=φ(x,z) x=ψ(y,z) と書け F(x,z,φ(x,z))≡0 F(y,z,ψ(x,z))≡0 より ∂y/∂x=∂φ/∂x=-(∂F/∂x)/(∂F/∂y)=-(∂f/∂x)/(∂f/∂y) ∂x/∂y=∂ψ/∂y=-(∂F/∂y)/(∂F/∂x)=-(∂f/∂y)/(∂f/∂x) として良いのでしょうか。 一見,与関数に於いてx,yは独立変数に見えるので ∂y/∂x=∂x/∂y=0 となる様にも思うのですが…。 どちらが正解なのか教えて下さい

  • 偏微分方程式の解について。

    現在、私は3変数(x、y、z)2階の偏微分方程式を解いています。 その同次解を導いています。 まず、変数の一般解をΣX(r)*(cosmθ)、ΣY(r)*(cosmθ)、ΣZ(r)*(cosmθ)と仮定し元の式に代入したのち、r=exp(s)と変数変換します。 そして同次解の形をX=X'exp(λs),Y=Y'exp(λs),Z=Z'exp(λs)のように仮定し代入することによって、自明でない解をもつ次の特性方程式を得ました。 p^3+d*p+f=0 このときp=(λ^2-A)とします。 またAとdとfは定数です。 ここから解を導くのですが λ^2=p+A>0のときは、 X=F*exp(λs)+S*exp(λs)  =F*r^λ+S*r^(-λ) このときのF,Sは勝手においた未知数です。 とまずおきました。 次にXを既知だと仮定し、YとZの関係を求めるのですが、 関数型はXと同様のために、F=1として 同次解を仮定して代入した式で計算してYとZの関係を導きました。 (簡単な2次方程式を解く作業です) 同様にS=1としても行いました。 そこで以下の解を得ました。 Y=G(λ)*F*r^λ+G(-λ)*S*r^(-λ) Z=H(λ)*F*r^λ+H(-λ)*S*r^(-λ) G(λ)とH(λ)は2次方程式を解いて出した関係式です。 次がわからないところです。 λ^2=p+A<0の場合、つまりλの根が複素数の場合です。 上と同様に係数を比較して求めるのですが、 X=F*cos(λs)+S*sin(λs) と仮定するところまではわかりますが、 その仮定によって Y={Re[G(j*λ)]cos(λs)-Im[G(j*λ)]sin(λs)}*F +{Im[G(j*λ)]cos(λs)+Re[G(j*λ)]sin(λs)}*S となるのがわかりません。Zについても式の形は同様です。 本当に困っています。 意味がわからない文章かもしれませんが、汲み取っていただけると幸いです。 ヒントでもいいのでください。 ちなみに 実部については G(j*λ)=G(j*-λ)が成り立ち      虚数部については G(j*λ)=-G(j*-λ)が成り立っております。

専門家に質問してみよう