• ベストアンサー
  • 困ってます

(a^(n+1)-b^(n+1))/(a-b)の基本対称式での表し方

対称式 (a^(n+1)-b^(n+1))/(a-b)=a^n+a^(n-1)b+…+ab^(n-1)+b^n を基本対称式a+bとabを用いて表すことを考えました。 色々と実験してみたところ Σ{i=0 to n/2}(-1)^iC(n-i,i)(ab)^i(a+b)^(n-2i) という形で表されるらしいことが分かりました。 ここで、C(n-i,i)は二項係数です。 しかし、どうにも証明ができません。 どなたが、証明の方法をご教授頂ければ幸いです。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数94
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

P[n]=(a^(n+1)-b^(n+1))/(a-b)とおくと、 P[n+2]=(a+b)P[n+1]-ab*P[n] が成り立つので、結論の式が予想できているのであれば、この関係を使って数学的帰納法で確かめてみれば?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

教えて頂いた等式を使って証明することができました。 途中、計算がとても面倒でしたが…。 どうもありがとうございました。

関連するQ&A

  • 基本対称式をべき和対称式で表したい

    任意の対称式は基本対称式で表すことができる、というのは基本的ですが、基本対称式をべき和対称式で表すことができることを証明するにはどうしたらよいでしょうか。具体的なnについてはもちろん求められますが(たとえばx_1x_2={(x_1+x_2)^2-(x_1^2+x_2^2)}/2)、うまい数学的帰納法か何かアイデアがないと一般の場合の証明ができず困っています。 べき和対称式というのは、x_1^k+x_2^k+…+x_n^kのタイプの対称式のことです。

  • 対称式の第一基本定理の証明・・・

    《対称式は基本対称式{e1,e2,…,en}の多項式としてただ一通りに表させる。つまりSはn変数の多項式環と同型です。》 という定理の証明がわかりません。 C[y1,y2,・・・,yn]∋F(y1,y2,・・・,yn)→F(e1,e2,…,en)∈S (C[y1,y2,・・・,yn]はn変数{y1,y2,・・・,yn}の多項式環S=S(x1,x2,…xn):対称式全体を表す。) この全単射を示せばいいことがわかり、単射の証明はできたのですが、全射の証明方法がわかりません。 複素係数の対称式が基本対称式の多項式として表されたらOKなのでしょうか? n変数ともなり、2、3変数のように簡単に証明ができないため、頭を抱えています。回答のほど、よろしくお願いします。

  • 対称式について

    数学の対象式について質問です。   a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc という対称式を、3文字の基本対象式である   a+b+c   ab+bc+ca   abc で示すとどのようになりますか? ちなみに、問題自体は「因数分解せよ。」というもので   (a+b)(b+c)(c+a) が答えでした。 気になって計算してみたのですが、どうしても示すことができなかったので質問しました。 よろしくお願いします。

  • 基本対称式、イデアル

    T=ΣC[x1,x2,...,xn]ei (←Σはi=1からnまでの和)  ={Σfi(x)ei |fi(x)∈C[x1,...,xn]} Tをこのようにおきます。 (後半は集合として表しています。) ___________________ 【注意点】 C[x1,x2,...,xn]はn変数複素係数多項式環 eiは基本対称式を表しています。 (※xnのnは添え字です。) (※ei、fi(x)のiは添え字です。)  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ このTに関して次のようなことが言えるのですが、 どのような意味なのか理解することができません。 どなたか、以下の事をもう少し分かりやすく教えて いただけないでしょうか。 基本対称式{ei|1≦i≦n}を含むようなイデアルはすべてTを含むので、Tは基本対称式を含むような最小のイデアルである。 このようなとき、Tは基本対称式によって生成された イデアルといいT=<ei|1≦i≦n>と表す。

  • 基本対称式

    [(x_1-x_2)(x_2-x_3)(x_3-x_1)]^2をx_1,x_2,x_3の基本対称式 s_1=x_1+x_2+x_3 s_2=x_1x_2+x_2x_3+x_3x_1 s_3=x_1x_2x_3 で表せという問題で、 18s_1s_2s_3+s_1^2s_2^2-4s_1^3s_3-27s_3^2-4s_2^3 となるらしいのですが、 導出方法が全く検討がつきません。 18とか27とか、どっから出てくるんでしょう。

  • にゃんこ先生の自作問題、基本対称式が正なら元の数も正か?

    にゃんこ先生といいます。 2実数a,bがあるとします。 基本対称式a+b,abがすべて正であれば、a,bはすべて正であることがわかります。 3実数a,b,cがあるとします。 基本対称式a+b+c,ab+bc+ca,abcがすべて正であれば、a,bはすべて正であることもわかります。 ここまでは確かめました。 次に、4実数a,b,c,dがあるとします。 基本対称式a+b+c+d,abc+abd+acd+bcd,ab+ac+ad+bc+bd+cd,abcdがすべて正であれば、a,b,c,dはすべて正なのでしょうか? さらに、そのn変数のときはどうなるのでしょうか? 計算では手に負えなくて、別の考えがいりそうなのですが、わからないです。

  • にゃんこ先生の自作問題、4実数a,b,c,dとその基本対称式の符号の可能性

    にゃんこ先生といいます。 3実数a,b,cと、基本対称式a+b+c,ab+bc+ca,abcにおいて、その符号の可能性を下のように調べました。 a,b,cの符号が分かると、abcの符号は一通りに決まるので、それは省略します。 a>0,b>0,c>0ならばa+b+c>0,ab+bc+ca>0 a>0,b>0,c<0でa+b+c>0,ab+bc+ca>0の例:a=3,b=3,c=-1 a>0,b>0,c<0でa+b+c>0,ab+bc+ca<0の例:a=1,b=1,c=-1 a>0,b>0,c<0でa+b+c<0,ab+bc+ca<0の例:a=1,b=1,c=-3 a>0,b>0,c<0でa+b+c<0,ab+bc+ca>0はありえない。 a>0,b<0,c<0でa+b+c>0,ab+bc+ca>0はありえない。 a>0,b<0,c<0でa+b+c>0,ab+bc+ca<0の例:a=3,b=-1,c=-1 a>0,b<0,c<0でa+b+c<0,ab+bc+ca>0の例:a=1,b=-3,c=-3 a>0,b<0,c<0でa+b+c<0,ab+bc+ca<0の例:a=1,b=-1,c=-1 a<0,b<0,c<0ならばa+b+c<0,ab+bc+ca>0 では、4実数a,b,c,dと、基本対称式a+b+c+d,abc+abd+acd+bcd,ab+ac+ad+bc+bd+cd,abcd(これは省略する)において、その符号の可能性はどうなるのでしょうか?

  • 対称式の偏微分

    二変数の偏微分で対称式の形になっているときに、偏微分のXとY両方を求めるときにまずXだけ真面目に計算してYのときはXの結果を流用してXとYを入れ替えているのですが。定期テストなどでこの方法はまずいですか?

  • 対称式のテクニック?

    X+Y XY の値が与えられている。 X^2+Y^2= このとき(X+Y)^2-2XYとすれば求められますよね。 それから、X^5+X^5=(X^2+Y^2)(X^3+Y^3)-・・・ って感じにするじゃないですか。 これってX+Y、XYだけであらわせられるようなのですが・・・。この手の問題が来たら、XとYをくくって二乗とか3乗!4乗はY^2+X^2を全体二乗!って形で覚えればいいんでしょうか。 質問書いているうちに、なんとなくパターンが自分でよめてきちゃいましたが、そもそもどういうことが聞きたかったかというと、基本対称式と言われるもの←XとYとか2文字だけのやつでしたっけそれはXY X+Yだけであらわすことが可能らしいです。 X^2Y とかなんで残らず消せるのだろうか・・・と疑問におもったのです。 まぁこれもこういうもんなんだって暗記してもいい気がしますが・・・ 理解が深まったほうが暗記の定着にもつながるから質問させてもらいました、おねがいします。

  • 対称式の因数分解について

    因数分解について、 例えば、 a^2(b-c)+b^2(c-a)+c^2(a-b) = -(a-b)(b-c)(c-a) bc(b-c)+ca(c-a)+ab(a-b) = -(a-b)(b-c)(c-a) a(b+c)^2+b(c+a)^2+c(a+b)^2 = (a+b)(b+c)(c-a) のように完全に対称性が保たれているものがありますが、 この因数分解を容易に(感覚的に?)行う方法・考え方はないでしょうか? ある1文字について降冪に整理して・・・とテキストにありますが、 その手法でははく対称性または対称群と絡めて捉えることができれば おもしろいと考えています。 よろしくお願いします。