• 締切済み

基本対称式、イデアル

T=ΣC[x1,x2,...,xn]ei (←Σはi=1からnまでの和)  ={Σfi(x)ei |fi(x)∈C[x1,...,xn]} Tをこのようにおきます。 (後半は集合として表しています。) ___________________ 【注意点】 C[x1,x2,...,xn]はn変数複素係数多項式環 eiは基本対称式を表しています。 (※xnのnは添え字です。) (※ei、fi(x)のiは添え字です。)  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ このTに関して次のようなことが言えるのですが、 どのような意味なのか理解することができません。 どなたか、以下の事をもう少し分かりやすく教えて いただけないでしょうか。 基本対称式{ei|1≦i≦n}を含むようなイデアルはすべてTを含むので、Tは基本対称式を含むような最小のイデアルである。 このようなとき、Tは基本対称式によって生成された イデアルといいT=<ei|1≦i≦n>と表す。

みんなの回答

noname#14584
noname#14584
回答No.1

・基本対称式{e_i|1≦i≦n}を含むイデアルはすべてTを含む 基本対称式があるイデアルIに含まれていたら、イデアルの性質(加法に関して部分群、C[x_i]からの作用に関して閉じている)より、Σf_i(x)*e_iの形で書けるものは全てIに含まれているので、T⊂Iですね。 ・Tは基本対称式を含むような最小のイデアルである 上より、基本対称式を含むTより真に小さいイデアルはない(T⊂Iより)ことになります。 ・Tは基本対称式によって生成されたイデアル 環Aの元a_1,a_2,…,a_nに対し、a_iによって生成されるイデアルとは、{Σa_i*x_i|x_i∈A}というイデアルのことです(これがイデアルになることはよろしいですね)。これと、a_1,a_2,…,a_nを含む最小のイデアルというものは同じになります(先ほどの議論を適用すればよいでしょう)。 ・T=<e_i|1≦i≦n>と表す。 環Aの元a_1,a_2,…,a_nに対し、a_iによって生成されるイデアルを、(a_1,a_2,…,a_n)と書きます。流儀によっては、<>を用いることもあります。簡単に表すために、そちらでは<e_i|1≦i≦n>=<e_1,e_2,…,e_n>と書いているのだと思います。

関連するQ&A

  • イデアルであることの証明

    T=ΣC[x1,x2,...,xn]ei (←i=1からnまでの和)  ={Σfi(x)ei |fi(x)∈C[x1,...,xn]} Tをこのようにおきます。 (後半は集合として表しています。) 【注意点】 C[x1,x2,...,xn]はn変数複素係数多項式 eiは基本対称式を表しています。 (※xnのnは添え字です。) (※ei、fi(x)のiは添え字です。) このTがイデアルであることを示したいと考えています。 イデアルであることを示すためには (1)ベクトル空間である(和とスカラー倍に関して閉じている。) (2)Tの任意の元と勝手な多項式の積もまた閉じている。 この2つを示せばいいと思うのですが、 どのように示せば良いのでしょうか? 教えて下さい。

  • 対称式の第一基本定理の証明・・・

    《対称式は基本対称式{e1,e2,…,en}の多項式としてただ一通りに表させる。つまりSはn変数の多項式環と同型です。》 という定理の証明がわかりません。 C[y1,y2,・・・,yn]∋F(y1,y2,・・・,yn)→F(e1,e2,…,en)∈S (C[y1,y2,・・・,yn]はn変数{y1,y2,・・・,yn}の多項式環S=S(x1,x2,…xn):対称式全体を表す。) この全単射を示せばいいことがわかり、単射の証明はできたのですが、全射の証明方法がわかりません。 複素係数の対称式が基本対称式の多項式として表されたらOKなのでしょうか? n変数ともなり、2、3変数のように簡単に証明ができないため、頭を抱えています。回答のほど、よろしくお願いします。

  • 代数学☆イデアルの問題!!

    次の問題について教えてください!! N:自然数 R:環 L,M:左イデアル LM={x1・y1+x2・y2+・・・+xn・yn |         xi∈L,yi∈M (i=1,2,・・・,n),n∈N} LMがイデアルであることを示せ。 左イデアルであることは示せたんですが、右イデアルであることが示せません。 右イデアルを示すために a∈LM,r∈Rに対して a=x1・y1+x2・y2+・・・+xn・yn (xi∈L,yi∈M) とおくと、 a・r=(x1・y1+x2・y2+・・・+xn・yn)・r    =(x1・y1)・r+(x2・y2)・r+・・・+(xn・yn)・r    =x1・(y1・r)+x2・(y2・r)+・・・+xn・(yn・r) になって、 a・r∈LMを示すのにyi・r∈Mを示すのかな、と思ったのですが、 どう示すのか分りません。  やり方自体間違っているのでしょうか、それともyi・r∈Mを示す方法があるのでしょうか。教えてください!!

  • 対称行列の固有ベクトル

    対称行列の固有ベクトルは互いに垂直という性質がありますが、 固有ベクトル AX1=λ1 X1、 AX2=λ2 X2 の式から n次の対称行列Aは次のように書き表すことができます A= λ1 X1 X1^t +λ2 X2 X2^t+ ・・・ +λn Xn Xn^t なぜ固有ベクトルの式から対称行列の式が表すことができるのでしょうか? 証明を教えてください。よろしくお願いします。

  • 調和多項式について

    偏微分作要素を∂とし∂(e1)=Σ(∂/∂xi)、∂(e2)=Σ∂i∂j…∂(en)=∂1∂2…∂nとする。({ek|1≦k≦n}は基本対称式を表す。) 調和多項式の定義: 多項式f(x)∈C[x1,・・・,xn]が調和であるとは、∂(ek)f(x)=0 (1≦k≦n)を満たす。 このとき、ニュートンの公式を使うと調和多項式の定義はべき乗和多項式を使っても同じ、つまり、f(x)が調和多項式であるとは、∂(pk)f(x)=0(1≦k)が成り立つことと同値です。 という問題がありました。ニュートンの公式を使うということは、べき乗和多項式が基本対称式で表されるということなのでしょうか?ニュートンの公式をどのように使って同値であることを示せばよいのかわからないので教えてください。お願いします。

  • 多項式環のイデアル

    多項式環のイデアル Rを実数体,s,tを自然数,u=max{s,t}として、 多項式環R[x,y]のイデアルA=(x^s,y^t),B=(x^t,y^s),C=(x^u,y^u)を考える。 s=t=1 でないとき A∩B=C が成り立つという結論になっていますが、なぜでしょうか? A=(x^2,y) B=(x,y^2) C=(x^2,y^2) のとき x^2y^2+xy∈(A∩B)-C だから A∩B≠C ではないでしょうか? なおこの質問を削除するのならば、 A∩B=C が成り立つという結論を出している質問も削除してください。

  • 基本対称式をべき和対称式で表したい

    任意の対称式は基本対称式で表すことができる、というのは基本的ですが、基本対称式をべき和対称式で表すことができることを証明するにはどうしたらよいでしょうか。具体的なnについてはもちろん求められますが(たとえばx_1x_2={(x_1+x_2)^2-(x_1^2+x_2^2)}/2)、うまい数学的帰納法か何かアイデアがないと一般の場合の証明ができず困っています。 べき和対称式というのは、x_1^k+x_2^k+…+x_n^kのタイプの対称式のことです。

  • 多項式環のイデアル

    代数幾何をやる準備として基礎を復習しているのですが、いろいろ難しいことがたくさんあって、わからないところの質問です。 Rを実数体, s, t を自然数, u=max{s, t} として、多項式環R[x, y] のイデアルA=(x^s, y^t), B=(x^t, y^s), C=(x^u, y^u) を考える。 次の 1, 2, 3, 4 の中で、成り立たないものはありますか。 自分としては、全部成り立つと思っています。 s=t=1 のとき 1. A=B=C は素イデアルになる(これは自分で証明できました) s=t=1 でないとき 2. A, B, C はどれも準素イデアルになり, 3. A∩B=C が成り立ち, 4. √A=√B=√C=(x, y) が成り立つ 2, 3, 4 はいいところまでいったのですが、途中で頭が混乱してきて証明が中途半端で終わってしまいました。 全体を通して少し引っかかるところがあるので、成り立つかどうかだけでもいいですから、どうかアドバイスをよろしくお願いします。

  • イデアルについて

    (1)イデアルのノルムについて 初等整数論講義などの二次体に限った議論をしている本では、イデアルIのノルムN'(I)(あえて'をつけています)とは共役イデアル(Aの元の共役全体の集合)をI'としたときII'=(n)となる有理整数のことだと定義しています(nの存在は証明されている)。 これは一般のデデキント環AにおけるイデアルIのノルムN_A(I):=|A/I|に矛盾するでしょうか? しないとしたら証明をお願いします。 (2)アルティン環のイデアルは有限個ですか? k[x^2, x^3]/(x^4) においてax^2 + bx^3 (a,b は体kの元)で生成されるイデアルたちが無限個ありそうなので、偽と踏んでいますが厳密な証明を与えられる方はいらっしゃいませんか。 (3)Z[x]のイデアル(の形)を全て求めてください。ただし https://math.stackexchange.com/questions/300170/ … にある情報は断りなく使用して良いです。解かれているか否か、情報だけでもいいですし、考察でもいいので是非ご回答ください。

  • 偏微分の計算(上下左右対称な拡散の計算)

    以下の偏微分の数値計算をしたいと思っています.(添え字などが分かりにくく,申し訳ありません.) ∂C(x,y,t)/∂t=▽{D(φ(x,y))▽C} 計算領域はx-y方向共に500分割されていて,1つの分割長をΔxとします.Dがφ(x,y)の関数なので前に出してD▽^2Cの形にはできません.このとき,以下の考え方が合っているのか教えていただきたいです.お願いします. 簡単のためにx方向だけで考えることにします.まず,後ろ(▽C)の部分を計算します. (▽C)[i]=(C[i+1]-C[i])/Δx.ここで(▽C)[i],C[i]は▽CおよびCのx方向のi番目の要素とします. i番目の▽Cができたので,それを使って前の部分を計算します. ∂C(x,y,t)/∂t={(D[i+1](▽C)[i+1])-(D[i](▽C)[i])}/Δx. この方法で計算はできるのでしょうか? もし,これで良いとすると例えば中心部から左右に対称(上下も同様)に拡散していく計算はできないことにならないでしょうか?Dを前に出せれば左右対称の計算結果になることは分かりますが,Dを前に出せない場合に左右対称にするための計算方法が分からず困っています.「対称なので半分の領域で計算すれば良い」という回答はなしでお願いします.上の考え方が合っているor間違っているだけでなく,正しい解法を教えていただけると助かります.