• ベストアンサー

0の定義

arrysthmiaの回答

  • ベストアンサー
  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.3

0 の定義は、「任意の整数 a について a + x = a が成り立つような整数 x」です。 そのような x が存在することは、「整数」の定義の一部なので、その存在については 「だって、それが無かったら、整数じゃないじゃん」以外の証明はありません。 lim[n→+∞] 1/n が 0 になることに証明を与えるには、lim の定義をきちんと 行うことが必須です。「ドンドン行くとドンドン」式では、証明になりませんから。 数列 a_n の極限 lim[n→∞] a_n が α になるとは、 任意の正数 ε に対して、自然数 M が在って、n > M ならば | a_n - α | < ε が成立することを言います。 この「極限」の定義に照らして、lim[n→+∞] 1/n = 0 は、 任意の正数 ε に対して、自然数 M が在って、n > M ならば | 1/n | < ε と言い換えることができます。これは、 任意の正数 ε に対して、自然数 M が在って、1/M < ε とも同値です。 この三番目の形は、「実数」の定義の一部であるアルキメデスの公理 そのものです。よって、自明。 この証明の中で、上記の 0 の定義は、| 1/n - 0 | = 1/n と計算するときに使いました。

fusem23
質問者

お礼

アルキメデスの公理は、有理数の稠密性とほとんど同じですよね。 ところで、加法の単位元の 0 とアルキメデスの公理の 0 が一致するのは、偶然ですか必然ですか? ありがとうございました。

関連するQ&A

  • 線形空間についての質問です

    (1)数列の一般項a_nについて 「a_n∈Vならばlima_nが存在し、その収束値をαとするとα∈V」となるような空間Vについて a_n,b_n∈Vのとき  lim(a_n+b_n)=lim(a_n)+lim(b_n)∈V lim(k・a_n)=k・lim(a_n)∈V Vは数0を零元としてもち、-a_nを逆元として持つ    などよりVは実線形空間である (2)収束しないa_nを並べた集合、つまり数列{a_n}={a_1, a_2, ・・・}全体の集合をVとする。ここでA=V∪{{0,0,0,・・・・}}とする。 (つまり上で定めたような数列{a_n}と数列{0,0,0,・・・・}を元としてもつ空間をAとする) このとき{a_n}{b_n}∈Aについて {a_n+b_n}={a_n}+{b_n} {k・a_n}=k{a_n}=k{a_1, a_2, ・・・}と定義したとき、Aは線形空間となる。 (なぜなら、和やスカラー倍がうまく定義できており、 Aは零元{0,0,0,・・・}と逆元{-a_n}={-a_1,-a_2,・・・}を持つから。) (3)実数列{x[n]}={x[0], x[1], x[2], ・・・}について、相並ぶk+1項のあいだに、 x[n+k]+a[k-1]x[n+k-1]+・・・a[1]x[n+1]+a[0]x[n]=0 なる関係、つまり漸化式が成立するようなもの全体の集合Aは実線形空間となる。 なぜなら{x[n]}{y[n]}∈Aについて {x[n]}+{y[n]}={x[n]+y[n]}={x[0]+y[0],x[1]+y[1],・・・} {k・x[n]}=k{x[n]}=k{x[0],x[1],・・・}と定義すれば Aにおいて和やスカラー倍がうまく定義できており 実数列全体の集合Vにおける零元{0}={0,0,0,・・・}は与えられた漸化式を満たすので{0}∈A 同様にVにおける逆元{-x[n]}={-x[0],-x[1],・・・}は、与えられた漸化式を満たすので{-x[n]}∈A などによりAは実線形空間である この(1)(2)(3)の主張、自分で考えてみたのですが、正しいでしょうか? 添削よろしくお願いしますm(_ _)m

  • y=x-[x]

    y=x-[x] の定義域をいえ。また、定義域における連続性をもとめよ という問題で解説には まず整数nについてn≦x<n+1とn-1≦x<nで、もとめてから 次に整数ではないa(n<a<n+1)について lim(x-b)=a-n とやっているのですが、なぜaの範囲がn<a<n+1なのですか。 そしてlim(x-b)=a-n となているのもよくわかりません、ガウス記号はどこへいってしまったのですか

  • 積分の定義

    独学で勉強しています。 微分が一通り終わって、積分に入ったところでつまづきました。 微分の場合は、導関数の定義  lim_{h→0}{f(x+h)-f(x)}/h を使って、log(x), sin(x), e^x などの導関数を求めることが出来ました。 積分に入ったところで、教科書では  lim_{Δx→0}Σf(x_k)Δx のような式が出ていて、x_k は a から b までを n 個に分割していました。 細い長方形に分割して面積を計算しているというイメージを 式にしたものだというのはなんとなくわかったのですが、 a とか b は定数になっていると思います。 微分のときとは違って積分で出てくるのは関数にはならないのでしょうか? そもそも私が定義だと思っている式が間違っていますか? 添付画像の計算は2週間悩んだ結果、よくわからないままにやってみた計算です。 a~b を n 個に分割しているので  x_k = a + (b-a)/n × k にしてみました。 あとは3行目から f(x)=x としてどんな結果が出るのか試しています。 何がわかっていないのかわからない状態なので、 うまく質問文がまとまらないですが、 よろしくお願いします。

  • 実数体への無限遠点の添加

    実数に無限遠点を加えた代数系を考えてみました。 何か問題や誤りはありませんか? この代数系では、以前の質問の回答を踏まえて、分配法則が成立します。 http://okwave.jp/qa/q7997401.html --- ここから --- 集合R' = R∪{Ω} 加法は x+Ω=Ω と定義し、次のように計算する。ただし、a, b は 0 でない実数とする。 0+0=0, 0+b=b, 0+Ω=Ω a+0=a, a+b=a+b, a+Ω=Ω Ω+0=Ω, Ω+b=Ω, Ω+Ω=Ω 加法の交換法則と結合法則は成立する。 加法の単位元は 0 であるが、Ω の逆元は存在しない。 乗法は x*Ω=Ω と定義し、次のように計算する。ただし、a, b は 0 でない実数とする。 0*0=0, 0*b=0, 0*Ω=Ω a*0=0, a*b=ab, a*Ω=Ω Ω*0=Ω, Ω*b=Ω, Ω*Ω=Ω 乗法の交換法則と結合法則は成立する。 乗法の単位元は 1 であるが、0 と Ω の逆元は存在しない。 分配法則は成立する。 減法は -Ω=Ω と定義し、次のように計算する。ただし、a, b は 0 でない実数とする。 0-0=0, 0-b=-b, 0-Ω=Ω a-0=a, a-b=a-b, a-Ω=Ω Ω-0=Ω, Ω-b=Ω, Ω-Ω=Ω 除法は 1/0=Ω, 1/Ω=0 と定義し、次のように計算する。ただし、a, b は 0 でない実数とする。 0/0=Ω, 0/b=0, 0/Ω=0 a/0=Ω, a/b=a/b, a/Ω=0 Ω/0=Ω, Ω/b=Ω, Ω/Ω=Ω 絶対値を次のように定義する。ただし、a は 0 でない実数とする。 -|Ω| < -|a| < -|0| = |0| < |a| < |Ω| Ωの平方根を次のように計算する。 √Ω = |Ω| べき乗を次のように定義する。ただし、a はR'の元、n は非負の整数とする。 a^1 = a a^(n+1) = a^n * a a^-n = 1 / a^n 等式の性質は、次の通り。 A=B ならば A+C=B+C A=B ならば A*C=B*C 数列a_n のΩへの収束は、次のように定義する。 ∀K>0 ∃n_0∈N ∀n∈N [n>n_0 ⇒ |a_n| > K] この数列の極限値を lim[n→+∞]a_n = Ω で表す。 lim[n→+∞]a_n = 0 ならば lim[n→+∞]1/a_n = Ω となる。 lim[n→+∞]a_n = Ω ならば lim[n→+∞]1/a_n = 0 となる。 Ωによる極限値は、次のように定義する。 lim[x→+∞]f(x) = lim[x→-∞]f(x) ならば lim[x→Ω]f(x) = lim[x→+∞]f(x) --- ここまで ---

  • 漸化式の問題考え方はいいでしょうか

    a[1]=b[1]=1,a[n+1]=a[n]+2b[n]・・あ,b[n+1]=a[n]+3b[n]・・い (n=1,2,3......) のとき、 (1)lim[n->∞]b[n]=∞を示せ。 (2)a[n+1]*b[n]-a[n]*b[n+1]をa[n],b[n]であらわせ、またa[n-1],b[n-1]であらわせ。 (3)lim[n->∞]a[n]/b[n]を求めよ。 (1)実際にb[n]の一般項をもとめて、n->∞をして、∞を示す。 (2)項の番号を下げていく。(-1になることがわかる。) (3)(2)で求めた式の両辺をb[n]*b[n+1]でわり、n->∞をすると  (1)より、右辺は0に収束するから、lim[n->∞]a[n+1]/b[n+1]=lim[n->∞]a[n]/b[n]・・う  で収束する。また、(あ/い)よりa[n+1]/b[n+1]=(a[n]+2b[n])/(a[n]+3b[n]) 右辺の分母分子を  b[n]で割り、うの式からこの値をk(>0)とすると、k=(k+2)/(k+3) これをといて,-1+√3。 (3)はごまかしがあるようにおもいます。(1)は簡単にできるのではないかとおもいます。(2)はこれしかないとおもいます。 よろしくお願いします。

  • 面積についての矛盾(?)

    はじめまして。 現在高2です。 他の掲示板で質問をしていたのですが、満足のいく返信が来なかったためここで質問させてください。 0≦x≦1で、f(x)≧0を満たす関数f(x)について、f(x),x軸,y軸,x=1で囲まれた範囲の面積Sは、 S:=∫_0^1 f(x)dx=lim_{n→∞}Σ_{k=1}^n {1/n f(k/n)} と定義できますが(多分あってると思います)、 a≠b,b→a として、y=b,x軸,y軸,x=1で囲まれた範囲の面積Sを考えれば、 明らかにS=b ところで、上の定義に従えば、 S=lim_{n→∞}Σ_{k=1}^n {b/n} で、これは n→∞について、 Σ_{k=1}^n {b/n}→bが成り立つことを示している。 ここで、b→aなので、 Σ_{k=1}^n {b/n}→b→a Σ_{k=1}^n {b/n}→a つまり、 n→∞について、 Σ_{k=1}^n {b/n}→a が成り立つことを示している。 よって S=lim_{n→∞}Σ_{k=1}^n {b/n}=a ゆえに、S=b=a これは仮定a≠bに反する。 いったいどこがおかしいのでしょうか。。 数式が見にくくてすみません。

  • 微分方とその応用 

    a_1=π/4、a_n+1=π(sin a_n)/2 (n=1,2,3・・・・・・)で定義される数列{a_n}を考える。また、b_n=π/2-a_n (n=1,2,3・・・・・・)とおく。 (1)不等式 1-cosx≦x^2/2 が成り立つことを示せ。 (2)n=1,2,3,・・・・・・ に対して不等式b_n+1≦π{(b_n)^2}/4 が成り立つことを示せ。 (3)n=1,2,3,・・・・・・ に対して不等式0≦b_n≦(π/4)^(2n-1)が成り立つことを示せ。 (4)極限値 lim a_n[n→∞]を求めよ。 という問題なのですが、(3)はどのようにして求めるのでしょうか。 解答には"(3)は数学的帰納法で求める"と書してあり、帰納法での回答に挑戦してみましたがうまくいきません。 よろしければ、回答のほうをお願いいたします。

  • オイラーの定数の定義式をずらす

    lim[n→∞] Σ[k=1,n]1/k - ∫[1,n]dx/x = lim[n→∞] Σ[k=1,n]1/k - log(n) = γ (オイラーの定数) ですが、a>0として、 lim[n→∞] Σ[k=1,n] 1/(k+a) - ∫[1,n]dx/(x+a) の値は具体的に知られているのでしょうか?

  • limitについての質問です

    (1)lim(n→∞){1/n+n/(n^2+1)+n/(n^2+2)+...+n/(n^2+(n-1)^2)} =lim(n→∞){n/(n^2+(1-1))+n/(n^2+(2-1)^2)+...+n/(n^2+(n-1)^2)} =lim(n→∞)Σn/(n^2+(k-1)^2) =lim(n→∞)Σn/(n^2{1+1/n^2×(k-1)^2}) (両辺に1/n^2をかける) =lim(n→∞)Σ1/n×1/(1+(k-1)^2/n^2) f(x)=1/(1+x^2) (2)lim(n→∞)b^n/n!(bは実数) =lim(n→∞)b/1×b/2×b/3×...×b/n =lim(n→∞)b/(n-(n-1))×b/(n-(n-2))×b/(n-(n-3))×...×b/(n-(n-n)) 指摘を受けてがんばって説いてみたのですが、両方ともそれぞれここで止まってしまいました。なるべく詳しい解説よろしくお願いします。

  • Σ[n=0..∞](-1)^n/nの収束はどうやってわかりますか?

    Σ[n=0..∞](-1)^n/nの収束・発散を吟味して収束ならその和を求めようとしていま す。 実際に判定してみましたら lim[n→∞]|a(n+1)/a(n)|=lim[n→∞]|((-1)^(n+1)/(n+1))/((-1)^n/n)|=lim[n→∞]|-n/(n +1)|=1で判定不能になってしまいました。 こういった場合はどうすればいいんでしょうか? 和についてですがとりあえず 収束という前提で収束値を求めてみましたら log(1+x)=Σ[n=1..∞] {(-1)^{n-1}/n}・x^n x=1代入で,log2 =Σ[n=1..∞] (-1)^(n-1)/nとなりましたがこれで正しいでしょうか?