• ベストアンサー

水の電気分解で H2O が反応するのは何故?

38endohの回答

  • ベストアンサー
  • 38endoh
  • ベストアンサー率53% (264/494)
回答No.13

いつのまにか議論が再開していたのですね…。また参加させて頂きます。 まず,T-Ein さんの文献についてですが,引用文中の「百年前からわかっている」の部分に,ちゃんと 100 年前の論文が参照されておりますか? もし参照があるなら,その元の論文に関する情報を教えていただけると幸いです。その論文こそが,この問題の「答え」ですから。万が一参照がない場合,引用された部分は「非科学的」と言わざるを得ません。なぜなら反応物濃度が 0.01 M 以上である根拠が全くないことになってしまうからです。この数字を元に pH < 2 だとか pH > 12 だとか議論する重要な値な訳ですから,正確な論理展開でキチンと導出しなければなりません。何の説明もなしに「百年前からわかっている」など言われても,全く説得力がないのです。 さて,ここからが本題です。多少以前に書いた内容の繰り返しになりますが,この問題の根本は「(i) 水分子の電離の反応速度と (ii) 電極反応速度の大小関係」にあると思います。ロジックは No.3 に書いたとおりです。当初私は,水の電離速度は十分に大きく,常に (i) > (ii) だと思っておりましたが,他の方々の回答およびその中の実験事実などを拝見させていただきますと,現実は私の認識とは異なり,恐らく水の電離速度は意外に小さいのだと思います。気体発生を目視できる程度の速さの,実感できる(?)水の電気分解では (ii) > (i) になっているのでしょう。本当は正確なデータが欲しいところですが,状況証拠として,No.4 による dragon-2 さんのフェノールフタレインの実験結果がそれを示唆していると思います。つまり,OH- が電極近傍に局在化する理由は OH- の移動度が比較的小さいためであり,その原因は水の電離の遅さに他なりません。また,多くの方の説明で見られる「濃度説」も,水の電離が十分に遅いことが暗黙の前提条件となっていれば納得できます。 今までの議論を総括し,私なりにまとめました。以下に示します。恐らく,現実もこのようなものではないかと思うのですが,如何でしょうか? [case 1.] (i) > (ii) の場合  CV など電気化学測定における微小電流での電気分解が,こちらの case に分類される。電気分解の速度は小さく,電極電位差も小さい。酸化還元反応を起こすイオン種は,それぞれ H+ と OH- である。よって,半反応式は(1)と(4)のみ。 [case 2.] (i) < (ii) の場合  気体発生を目視できる程度の速さでの電気分解が,こちらの case に分類される。電流が大きく電気分解の速度は大きい。電極電位差は case 1 の時よりも大きく,反応を起こす化学種は H+ と OH- と H2O の 3 種類。このうち,陰極近傍にある H+ と陽極近傍にある OH- は電気分解の開始と共に減少し始め,後に低い濃度で保たれる。この濃度とは,イオン種の電極反応速度と供給速度とがつりあった平衡濃度である。  電極反応の経時変化は,濃度が変化し続ける「初期状態」と平衡濃度で安定する「定常状態」とに分けられる。初期状態とは,H+ と OH- が H2O よりも優先して電極反応を起こすが,H+ や OH- の泳動・対流・電離などが遅いために電極への供給が間に合わず,電極近傍の濃度が減少し続ける状態のことである。一方定常状態とは,H+ と OH- が低濃度で安定し,ほとんど H2O のみが電極反応を起こしている状態のことである。つまり,初期状態における半反応式は(1)と(4)で表すことができ,定常状態における半反応式はほぼ(2)と(3)で書ける。  この初期状態の寿命は,それぞれ H+ および OH- の初期濃度によって決まる。pH = 7 の時は,両者の初期濃度はほぼ同じオーダーにあると見なせるが,もし pH が十分に小さいときや十分に大きいときは,両者に著しい濃度差が生じ,その結果,陰極と陽極とで初期状態の寿命が異なってくる。つまり,片一方の電極のみで,初期状態が長く続くことになる。この現象に基づき,一方の電極が初期状態で他方の電極が定常状態の系のことを,以下「準定常的な系」と呼ぶことにする。例えば pH が非常に低い場合「陰極の初期状態の寿命 >> 陽極の初期状態の寿命」である。すなわち,陽極はすぐに定常状態に移行して H2O の酸化反応が主となるにも関わらず,陰極は長時間初期状態を維持し,H+ を還元反応をし続ける。この準定常的な系の半反応式は(1)と(3)である。同様にして,pH が非常に高い場合の準定常的な系の半反応式は(2)と(4)になる。これらの準定常的な系はあくまでも過渡的な状態であるが,pH が極端に大きかったり小さかったりした場合,準定常的な系を維持する時間は非常に長い。そのため,場合によっては,実際の実験において定常状態を観察できないことも考えられる。

rei00
質問者

お礼

遅くなりましたが,#10, #11 も合わせてお礼申し上げます。  実は,この回答を拝見してから図書で電気化学や電極反応関係の成書を何冊か借り出して,私なりの解釈を加えようと考えていましたが,私の力に余りました。  回答頂いたこの内容,私には非の打ち所がありませんですた。どうもありがとうございました。今後とも宜しくお願いします。

関連するQ&A

  • 電気分解の反応式について

    NaOH水溶液の電気分解(白金電極)の反応式がわかりません。 両極では、なぜ下の反応が起こるのでしょうか? 陽極: 4OH- → 4e- + 2H2O + O2 陰極: 2H2O + 2e- → H2 + 2OH-   NaOH水溶液では、陽極においてOH-が多く存在するために、OH-が 酸化される。 陰極では、Na+のイオン化傾向が大きいため、代わりに水分子 が還元されるというふうに自分では解釈してます。(あってるかなー?) しかし、生成物(陽極のH2O、陰極のH2、OH-)は丸覚しないとダメなんでしょうか? 考えることが好きな性格なので、この反応式の作り方をゼヒ教えてほしいです。 どの参考書を見ても、結果の反応式だけしか書いてないんで・・。 お願いします。

  • 水の電気分解に関する私の勘違い(?)を解いて下さい

       水の電気分解において,陰極及び陽極で次の反応が起こって,それぞれ OH- や H+ が生成します。    陰極:2H2O + 2e- ―→ H2↑ + 2OH-    陽極:2H2O ―→ 4H+ + O2↑ + 4e-  このままでは,電気分解の進行に連れて,陰極の OH- 濃度と陽極の H+ 濃度が高くなり,反応が止まります。通常は,支持塩の Na+ や SO4(2-) が,各イオンを中和したり,生成した OH- や H+ が移動して反応の停止を防いでいます。  だとすると,イオンの濃度勾配の生成を抑えれば,電気分解は進行すると思われます。例えば,次の様に行ないます。 ・陰極と陽極に別々の電解槽(溶液の流入,流出口のあるもの)を用意します。 ・陰極側に硫酸水溶液を,陽極側に水酸化ナトリウム水溶液を入れます。 ・陰極側に硫酸水溶液を,陽極側に水酸化ナトリウム水溶液を,それぞれ一定速度で流します。 ・電解槽に白金電極を入れ,電池をつなぎ,電気分解を行ないます。  この装置では,生じた OH- や H+ を電解槽から流出させる事で,電極部分のイオンの濃度勾配の生成が抑えられます。そのため,電池の寿命がある限り電気分解が進みます(?)。  そうすると,陰極側流出液には OH- が,陽極側流出液には H+ が,それぞれカウンタ-イオン無しに存在する事になってしまいます。これは納得いかないので,何処かで勘違いしていると思うのですが,何処かが判りません。  すみませんが,私の勘違いを指摘し,私を納得させて下さい。  

  • 水の電気分解

    酸性の水溶液はH+ アルカリ性の水溶液はOH- を含んでいますよね これを二つあわせると水になりますよね だとすると電気分解したとき 陽極で酸素と水素 陰極で水素が が発生すると思うのですが 陽極で酸素 陰極で水素が 発生するのは何故ですか?? 教えてください

  • 電気分解で,電極と水分子の反応について

    (1)蒸留水では,電気分解は進まないということになっています。 つまり,陰極,陽極では,H2O分子は,ほとんど反応しないと言うことだと思われます。 (2)一方,NaOHや,H2SO4などの水溶液中では,教科書では,これで覚えようとなっています。 陰極 2H2O+2e-→H2+2OH- 陽極 2H2O→O2+4H++4e- (2)では,水分子は,電極で反応できることになっています。 (1)の蒸留水では,できないということになっています。 (1)と(2)では何がちがうのでしょうか。 (2)で出来るのなら,(1)でも出来ないとおかしいはずです。 何が,起きているのでしょうか? よろしくお願いします。

  • 電気分解の問題

    (1)電解液NaOH水溶液 陽極Pt陰極Pt (2)電解液H2SO4(硫酸) 陽極Pt陰極Pt 各電気分解での、陽極・陰極での変化をe-を含む反応式で記せ。という問題です。 (1) 陽極:4OH(-)→2H2O+O2↑+4e-(OH-とSO4を比較して) 陰極:2H(+)+2e-→H2 (2) 陽極:(1)の陽極の反応と同じ 陰極:(1)の陰極の反応と同じ が自分の解答です。 (1)の陰極、(2)の陽極の反応が間違っているんですが、考え方の違っているところはどこでしょうか? 化学がお得意のかた、よろしくお願いしますm(__)m

  • 電気分解を解いているときに...

    電気分解に関する質問です。これの解き方について, 私の持っている参考書には以下のように書いてありました。 -------------------------------------------------- 陽極  (1) 白金,炭素以外→電極がイオンとなって溶け出す  (2) ハロゲン化物イオンがある→その単体が生成  (3) その他→酸素が発生※1 陰極  (1) Zn よりイオン化傾向が低い→その単体が生成  (2) Al よりイオン化傾向が高い→水素が発生※2 ※1 酸性水溶液以外では,次の反応により電極付近は酸性になる。 2H20 → O2↑ + 4H+ + 4e- (塩基水溶液 4OH- → 02 + 2H20 + 4e-) ※2 酸性水溶液以外では,次の反応により電極付近は塩基性となる。 2H2o + 2e- → H2↑ + 2OH- (酸性水溶液 2H+ +2e- → H2) -------------------------------------------------- 私はこの手順を暗記して解いているのですが,硫酸ナトリウムを電気分解する問題で,良く分からない点がありました。 陽極の反応で(3)を適用し,硫酸ナトリウムは酸性水溶液だと思ったので,手順に従い以下の反応式を書いたら,正解でした。 (2H20 → O2↑ + 4H+ + 4e-) しかし,陰極での反応は酸性水溶液の反応を書いたら間違いでした。 (2H+ +2e- → H2) なぜでしょうか。 また,なぜ※1や※2のようなことが起こるのでしょうか。ここさえなければ電気分解は簡単なのですが…。高校の範囲ではとりあえず暗記しておけ,という項目なのでしょうか。 分からない言葉があれば当方で調べるので,詳しく説明して頂ければ幸いです。

  • 水の電気分解について

    中3です。イオンや電離のことをやっていて、水の電気分解について調べていたら↓の式が出てきました。 <水酸化ナトリウム水溶液>     NaOH → Na+ + OH- 陰極:2H2O + 2e- → H2 + 2OH-       陽極:4OH- → 2H2O + O2 + 4e-   eって電子のことですか? 式の意味もよくわかりません…。 わかりやすく説明お願いします!!

  • 電気分解の反応式・・・!

    化学で困ってます! 例えば、NaCl水溶液に陽極、陰極共に炭素の極板がある。 陰極・・・2H2O+2e-→H2+2OH- 陽極・・・2Cl-→Cl-+2e-となりますが、このとき、両極の炭素は無視していんですか? イオン反応式を書く上で規則みたいなもの(電気分解による生成物の表)で陰極についてはCu2+、Ag+があるときはそれについて書き、Cu2+、Ag+がないときはH2Oについて書く。 そして、Na+、Al3+があったらそれについて書く。でも上記の陰極・・・2H2O+2e-→H2+2OH-はNa+についてではないんです。。 よくわかんないです。 わかる方、ぜひこの私にお教えてください!お願いします!

  • 電気分解について

    白金電極で硝酸銀水溶液を電気分解するという問題で 陰極について AgNO3→Ag++NO3- H+>Ag+ Ag++e-→Ag...(答) 陽極について NO3->OH-より 4OH-→O2+2H2O+4e- 4H++4OH-→4H++O2+2H2O+4e- 2H2O→4H++O2+4e-...(答) というのを授業で習ったのですが同じように水酸化ナトリウム(白金電極)と硫酸銅(II)水溶液(電極銅)を式で表わしたらどのようになるか教えていただけないでしょうか。

  • 電気分解について

    化学―電気分解 電解質NaOH 陰極Pt、陽極Pt 陰極と陽極でおこる反応をそれぞれ示せ。 陰極 2(H2O)⇔2H++2OH-……(1) 2H++2e-→H2 この2式を足して、2(H2O)+2e‐→H2+2OH- 陽極 4OH-→O2+2(H2O)+4e- 半角の+-はイオンの+-です。 なぜ、このようになるんですか?(1)の水の係数は、硫酸銅だと4になっていますが、この係数は何で決まるんでしょうか? NaClの場合は陽極がClの反応になってますが、水の分解かその他の物質の反応かはどのように判断すればいいんでしょうか? 教えてください。