• 締切済み
  • 暇なときにでも

ベクトルについて

ベクトルの問題で 平面上にAB=2を満たす定点A,Bがある。 点PがベクトルAP、BPの内積≦0,ベクトルAB、APの内積≧ベクトルBA、BPの内積を満たして動くとき、√3AP+BPのとり得る値の範囲を求めよ。 という問題がありました。 三角形の成立条件とかいろいろ考えたのですがわかりません。 あと求めるものに√3APというように√3が付いているので何か意図があるのかな?と思ったのですがわかりません。 どうやって解いたらよいでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数132
  • ありがとう数0

みんなの回答

  • 回答No.1

A(1, 0), B(-1, 0)とおいても一般性を失いません。 AP・BP≦0よりABを直径とする円の内部、AB・AP≧BA・BPより右半円をPは動くことがわかります。 P(x, y)とおくとPはx≧0, x^2 + y^2≦1を動きます。 √3AP + BP = (√3 + 1)OP - OA - OB = (√3 + 1)OP なのでPはx≧0, x^2 + y^2≦√3 + 1を動きます。

共感・感謝の気持ちを伝えよう!

質問者からの補足

>>√3AP + BP = (√3 + 1)OP - OA - OB = (√3 + 1)OP これ間違っているのではないでしょうか? 右辺=(√3 + 1)OP - √3OA - OB になりますね。

関連するQ&A

  • ベクトルに関する問題です。教えてください!

    三角形ABCがあり、AB=AC=√3、cosA=2/3 である。辺BCの中点をD、辺ABを2:1に 内分する点をEとし、線分ADを直径とする円をKとする。直線DEとKの交点のうち D以外の点をFとする。点PがK上を動くとき、内積AF・APの取りうる値の範囲を求めよ。 ベクトルは省略させていただきます。 点PがK上を動くとき というところをどのように考えて解けばいいのか分かりません。 詳しく解説していただけると嬉しいです!! よろしくお願いします!

  • ベクトル

    ABベクトルをABとします 1) 平面上の△ABCにおいてAB・BC=BC・CA=CA・AB が成り立つ時△ABCは正三角形であることを示せ 上の問題で AB+BC+CA=0(ゼロベクトル) ↑を使うような気がするのですが解法が全く思いつきません 2) 座標平面上の原点をOとし、点A(1/3,0)、点B(0,2/3)とする 負でない実数s,tはs+2t=3を満たしながら動くものとするこのとき 座標平面上の点Pを OP=sOA+tOBによりさだめる (1)点Pの存在範囲を求めよ (2)内積AP・APの最小値をもとめよ 2)は全くできないです どうか御教授よろしくおねがいします。

  • 【ベクトル】

    苦手なベクトル問題です(><) ベクトルの記号を→で示しています。 例)ABベクトル…AB→ 座標平面上の原点をOとし、A(1/3、0) B(0、2/3)とする。 負でない実数s、tは、s+2t=3を満たしながら動くものとする。 このとき、座標平面上の点PをOP→=sOA→+tOB→により定める。 (1)点Pの存在範囲の図示 (2)内積AP→・AP→の最小値 ガイドが少し載っていたのですが、 希望があれば追記しますm(__)m 解法つきでお願いしたいです(/_;)

  • このベクトルの問題を教えてください。

    このベクトルの問題を教えてください。 問題は 平面上に三角形ABCがあり、実数tが0≦t≦1の範囲で動くとき、 APベクトル+2tBPベクトル+(1-t)CPベクトル=0ベクトルをみたす 点Pの軌跡を求めよ。 です。 僕はまず、ベクトルの始点を原点にそろえて、Pベクトルについての方程式を立てたんですが、その先がわかりません。 何回も計算しても答えが合いません。 ちなみに答えは 線分ABを2:1に内分する点と線分ACの中点を結んだ線分 です。

  • ベクトルの問題なのですが・・・・・

    三角形ABCがあり、AB=AC=√3、cosA=2/3である。 辺BCの中点をD、辺ABを2:1に内分する点をEとし、線分ADを直径とする円をKとする。 直径DEとKの交点のうちD以外の点をFとする。 点PがK上を動くとき、内積AF・APの取りうる値の範囲を求めよ。 ベクトルは省略させていただきます。 どうやって求めたらいいのかが分かりません。 教えてください!!

  • ベクトルの問題です。教えてください!

    三角形ABCがあり、AB=AC=√3、cosA=2/3である。辺BCの中点をDとする。 辺ABを2;1に内分する点をEとし、線分ADを直径とする円をKとする。 直線DEとKの交点のうち、D以外の点をFとする。点PがK上をうごくとき、 内積AF・APの取りうる値の範囲を求めよ。 (ベクトルは省略させていただきます) どうやって考えたらいいのか分かりません。 詳しく教えてください! よろしくお願いします。

  • ベクトルの問題を教えてください。

    ベクトルの問題を教えてください。 1、三角形ABCの各辺の辺AB↑をベクトルc、辺BC↑をベクトルa、辺AC↑をベクトルb、辺ACと辺BCのなす角をθとする。 (1)cをaとbによりベクトルの式を用いて表せ。 (2)ベクトルの内積を用いて三角形に関する余弦公式 c=√a^2+b^2-2ab*cosθを導け。(ヒント:ベクトルcについて同じベクトルどうしの内積を計算してみよ。) 2、スカラー界ψ=4xz^3-3x^2について (1)点(x,y,z)におけるψの傾き(勾配)を求めよ (2)点(2,-1,2)における傾きを求めよ (3)点(2,-1,2)における単位ベクトルu=1/7(2i-3j+6k)に対する方向微係数をもとめよ

  • ベクトルの問題

    閲覧ありがとうございます。 ベクトルの問題で分からないものがあったので教えてもらえたら嬉しいです。 問  一辺の長さが2の正三角形ABCの一辺BCを直径とする円の周上に点Pをとる。 (1)図のように座標軸をとり、P(x,y)をおくとき、AP↑とBP↑の内積AP↑・BP↑をx,yを用いて表せ。 (2)AP↑・BP↑の最大値を求めよ。 一応(1)はAP↑とBP↑を成分で表示してAP↑(x,y-√3)、 BP↑(x+1,y)となって、内積の公式からAP↑・BP↑を求めると AP↑・BP↑=x^2+y^2+x-√(3)y となりました。 問題は(2)で最大値が求められません・・・ どなたか教えてください! 最後まで読んでいただきありがとうございます。

  • ベクトルの問題

    平面上に三角形ABCがある。 点Pを  8PAベクトル+5PBベクトル+7PCベクトル=0 を満たすようにとる。 直線APと直線BCの交点をMとすると  AMベクトル=○ABベクトル+○ACベクトル と表される。 三角形ABMと三角形ACMの面積の比は  △ABM:△ACM=○:○ で与えられる。 この問題の○の部分を答えたいのですが、わかりません。 APベクトルの直線上にAMベクトルがあると思ったので 8PAベクトル+5PBベクトル+7PCベクトル=0 の式からAPベクトルをABベクトルとACベクトルを使って求めることはできたのですが、そこからAMベクトルを求めることができません。 面積については考え方もわからないので解説よろしくおねがいします。

  • ベクトル、内積、外積など

    ベクトル、内積、外積など はじめまして、私は情報系の分野を専門的に学習している学生です。 情報分野ではそれなりの知識を持っているので、あえて数学的な 質問をさせていただきます。   ・三次元平面上に点ABCがあります。   ・点ABCを含む平面上に点Pがあります。 三角形ABC内に点Pが存在することを確かめるには、 どのようにすればよいでしょうか? またこれには以下のような制約があります。   ・パソコン上で計算するので、なるべく計算回数    (特に乗算、除算)を抑えたい。   ・パソコン上では三角関数などは級数なので精度、    処理速度、共に両立できない。 なので、なるべく少ない計算量で、四則演算のみを用いた 解法が必要です。 以下は私の考えた手順ですが、   (1)ベクトルBcとBa(もしくはBp)との外積によりベクトルNを得ます。   (2)ベクトルNとBcとの外積によりBcに直行するベクトルBc´を得ます。   (3)ベクトルBc´とBpとの内積が負ならば、点Pは線分B-Cの外に位置します。   これをB-C、C-A、A-Bと行うことで判定します。 これでは外積を2回、内積を1回計算する必要があり、計算量が多いので より簡潔な手法が必要です。 (本当に数学って大切ですね、もっと勉強しておけばよかった(^^;)