• 締切済み

部分空間であることの証明

「ベクトルa=(1,1,2),ベクトルb=(2,1,2)する。Span{aベク,bベク}なる集合Wは三次元空間の部分空間であることを示せ。」 成分が3つだから、としか言いようがない気がするのですが、学者さんたちはこれをどのように証明するのでしょうか?よろしくお願いします。

みんなの回答

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.2

Span がそもそも、a, b を含む最小の部分空間を意味しているのではないでしょうか? >成分が3つだから、としか言いようがない気がするのですが 成分が 3つだから何だと言うのでしょうか?補足にどうぞ。

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

成分がみっつだからって部分空間とは限らん Spanの定義によって証明は変わる 部分空間の定義も理解すること

関連するQ&A

  • 部分ベクトル空間であることの証明

    Vをベクトル空間、WをVの空でない部分集合とする。 集合Wが次の2条件(1)(2)を満たせば、Wはベクトル空間(加法とスカラー倍はVのと同じものを使う)になることを示せ。 (1)Wの任意の元a,bに対して、a+bもWの元となる (2)Kの任意の元k、Wの任意の元aに対して、kaはWの元となる この証明なのですが、以下のように示しました。 (∵) WがVの部分ベクトル空間であるには、 (1)Wが空集合でない (2)Wがベクトル空間の性質を全て満たす (3)Wが加法、スカラー倍について閉じている の3つである。 (1)は題意より明らか。 (2)は、Vがベクトル空間で、WはVの部分集合であることから、Wも当然ベクトル空間の性質を満たす。 したがって、残りの(3)のみを満たしていれば良い。 Q.E.D こんな感じでよろしいでしょうか? 稚拙な部分等ありましたらご指摘お願いします。

  • 部分集合と部分空間の証明について

    部分集合と部分空間の証明について p を(k,l)行列, q を零ベクトルでない k 次列ベクトル, R^l の部分集合 N を N= { x | px=q }とするとNは解の和とスカラーa倍について閉じていることを証明したいのですが p(x1)=q1, p(x2)=q2, aは実数、 p(x1+ax2)=(q1+aq2) x1+ax2はNの要素 という証明でよいのでしょうか? よろしくお願い致します。

  • 線形代数 ベクトル空間と行列(ランク)の証明

    証明のやり方がよくわからなかったので次の2つの証明のやり方を わかる方どうか教えてください。 1、 Aを(m、n)行列 Bをn次の正則行列  Cをm次の正則行列とするとき   rank(CAB)=rank(AB)=rank(A) を示す。 2、 UをK上の有限次元ベクトル空間、WをUの部分ベクトル空間とする。 a1,a2,,,,,arをWの基底とするとWの次元がrということを示す。 この2つです。どちらか片方だけでもいいのでもし分かるかたがいたら よろしくお願いします。

  • 部分空間の基底と次元について

    すみません、大学の教科書で少しわからない点があったのでご教授ねがいます。 質問は、Wの基底と次元の話なのですが、 W={(a,a,b)∈R^3|a,b∈R} が与えられています。 (a,a,b)=a(1,1,0)+b(0,0,1) Aベクトル=(1,1,0),Bベクトル=(0,0,1)とおくと、 W=<Aベクトル,Bベクトル> ここで、AベクトルとBベクトルは1次独立であるから、 AベクトルとBベクトルはWの基底となり、dimW=2 となると思うのですが、次のようにするとどうでしょうか・・ W={(a,a,b)∈R^3|a,b∈R} が与えられています。 (a,a,b)=a(1,0,0)+a(0,1,0)+b(0,0,1) Aベクトル=(1,0,0),Bベクトル=(0,1,0),Cベクトル=(0,0,1)とおくと、 W=<Aベクトル,Bベクトル,Cベクトル> ここで、AベクトルとBベクトルとCベクトルは1次独立であるから、 AベクトルとBベクトルとCベクトルはWの基底となり、dimW=3 となってしまう気がします・・・ 同じ部分空間Wが基底の取り方によって次元が変わるのはおかしな話だと思うのですが、どこが間違っているのかわからないのです・・・ おねがいします。

  • 部分空間

    線型代数でわからないところがあったの、どなたか教えて頂けると有難いです。大学生です(理系) 定理*を利用して、2×2行列全体の作る線型空間Mの部分空間となるものはどれか? (1) a b c d という形の行列全体。ただし、a,b,c,dは整数とする。 (2) a b c d という形の行列全体。ただし、a+d=0とする。 (3)A=Atrとなる2×2行列全体。(Atr:行列Aの転置行列) (4)正方行列Aの行列式det(A)=0となる2×2行列全体。 定理* 線形空間Vの空でない部分修吾Wが部分空間となるための必要十分条件は、 ・ベクトルu,vがWのベクトルなら、u+vもWのベクトル ・uがWのベクトル、kがスカラーなら、kuもWのベクトル である。 答えは2,3らしいのですが、なぜだかよくわかりません。 1はスカラーに関して閉じていないから×なのかな…と思うのですが、他はよくわからないです。

  • ベクトルが3次元実ベクトル空間を動くとき

    以下の行列Aについて、すべての問いに答えなさい。   |1 4 0 | A = |1 0 2 |   |0 2 -2 | (1) 行列Aの固有値を求めなさい。 (2) 行列Aの各列をベクトルa1,a2,a3で以下のように表す。    A=(a1,a2,a3) これらの3個のベクトルの従属関係を式で示しなさい。 (3) ベクトルxが3次元実ベクトル空間(線型空間)V全体を動くとき、これによってつくられる点の集合を    W1={Ax|x∈V} とする。この集合がつくる実ベクトル空間の次元を求めなさい。 (4) ベクトルpをp=t(1,2,1)とする。ベクトルxがx・p=0となるような3次元実ベクトル空間Vを動くとき、xがどのような図形を描くか答えなさい。なお、t()は転置を表し、x・pはxとpの内積を表す。 (5) (4)のようにxが動くとき、集合    W2={Ax|x∈V,x・a=0} がつくる実ベクトル空間の次元を求めなさい。 という問題があるのですが、 (1):λ1=3, λ2=0, λ3=-3 (2):略 (1),(2)は合ってる自信があります。 (3)   |1 4 0 |   |1 4 0 | A = |1 0 2 | = |0 -4 2 |   |0 2 -2 |   |0 0 0 | これはrank=2となり、xをかけてもrankは変わらないので、 次元は2 (3)は次元は合ってる気がするのですが、答え方が間違ってるような気がします。 (4),(5)の解き方が分かりません。 (4)はx・p=0なので直交することは分かるのですが、これをどう使うかが分かりません。 (5)は(4)が解けないと解けないのですが、(4)が解けたとしてもaというよく分からないの出てきてて、解けなくなってしまいそうです。 どなたか(3),(4),(5)を解いて下さる方いらっしゃいませんか?

  • 部分空間に関する問題について・・・。

    以下の問題についての証明なのですが,これでいいかどうか添削して下さい。 問題)V=R^n(n≧2)とし,第n座標が0であるようなVの元全体の集合をWとする。WはVの部分空間である。(Rは太文字と思ってください。) 証明)まず零ベクトル0は0=(0,0,…,0)であるから,0∈Wである。    またWの元ai,biは第i座標(1≦i≦n)が0であって   ai=(a1,a2,…,ai,…,an),bi=(b1,b2,…,bi,…,bn)と表わされ,   ai+bi=(a1+b1,a2+b2,…,ai+bi,…,an+bn)   cai=(ca1,ca2,…,cai,…,can)(cは任意の実数)   ここで,ai=bi=0であるから    ai+bi=0,cai=0    したがって,ai+bi,caiはともにai+bi,cai∈Wである。    ゆえに,Wは部分空間である。

  • 連立方程式の解の集合が部分空間となる

    x1 - x3 = 0 8x1 + x2 - 5x3 - x4 = 0 x2 + 4x3 - ax4 = 0 x1 - x2 - 3x3 + 2x4 = b という連立1次方程式があり、 すべての解の集合が4次元実ベクトル空間の部分空間となるときのaとbの条件を求めよ という問題があるんですが、 問題の意味がいまいちよく分からないのですが、 これはどのようにして解けばいいんでしょうか? ベクトルについての理解が少し足りないので部分空間や解空間について調べてみてもいまいちよく分からないんです。

  • 4次元空間の3つのベクトルが互いに直交する条件

    以前、 4次元空間の4つのベクトルが張る空間が1次元、2次元、3次元、4次元である条件 http://oshiete1.goo.ne.jp/qa3519203.html において、いろいろ教えていただけました。 同様にすれば、4次元空間の3つのベクトルが張る空間が1次元、2次元、3次元である条件、が成分を用いて書けることになります。 ところで、いくつかのベクトルが張る空間が1次元というのは、すべてのベクトルが平行ということです。 今回、それとは逆に「すべてのベクトルが互いに直交する」という条件を考えてみたいと思います。 4次元空間にゼロベクトルでない4つのベクトルを考えます。 a↑=(a[1],a[2],a[3],a[4]) b↑=(b[1],b[2],b[3],b[4]) c↑=(c[1],c[2],c[3],c[4]) d↑=(d[1],d[2],d[3],d[4]) とします。 a↑、b↑、c↑、d↑の4つのベクトルが互いに直交する条件は、 4つのベクトルでできる立体=超立方体 なので、行列式の絶対値は、各辺の積と等しく、 |a↑ b↑ c↑ d↑|^2=|a↑|^2* |b↑|^2* |c↑|^2*| d↑|^2 とかけます。成分でも書けます。 a↑、b↑の2つのベクトルが互いに直交する条件は、 内積を用いて、 a↑・b↑=0 とかけます。成分でも書けます。 最後に、a↑、b↑、c↑の3つのベクトルが互いに直交する条件を、できるだけ簡素に書きたいとき、どういった書き方になるのでしょうか? すべての組の内積が0というのより、なんらかの行列式を用いて書きたいのですが。

  • 直交補空間などについて

    どうしても分からない問題がありますのでよろしくお願いします。 もちろんどちらか片方でも構いませんので、よろしくお願いします。 行列Aがあって、Aの成分は第一行が[3/4,√6/4,1/4]第二行が[-√6/4,1/2,√6/4]第三行が[1/4,-√6/4,3/4]である。 1、Aの固有値1に対する固有空間Wの大きさ1のベクトルからなる基底を求めよ。 2、三次元ベクトル空間におけるWの直交補空間Vの正規直交基底{v1,v2}を求めよ。