この英文の和訳をお願いします。
Finally, we will add a comment on comparison of our result with those of Wetherill and Cox (1985). Wetherill and Cox examined three-dimensional calculation for a swarm of planetesimals with a special distribution, i.e., e_2 has one value and i_2 is distributed randomly between 0.3e_2 and 0.7e_2 (<i_2>=e_2/2) while e_1=i_1=0, which corresponds, in our notation of Eq. (9), to
<n_2>={n_sδ(e_2-e)δ(i_2-i)/0.4π^2e(2/2) for 0.3e_2<i_2<0.7e_2,
{0 otherwise. (38)
Integrating <P(e,i)> with above <n_2> according to Eq. (9), we compare our results with theirs. Figure 18 shows that their results almost agree with ours (the slight quantitative difference may come from the difference in definition of the enhancement factor); but their results contain a large statistical uncertainty because they calculated only 10~35 collision orbits for each set of e and i while 100~6000 collision orbits were found in our calculation (see Table 4). Furthermore, our results are more general than theirs in the sense that their calculations are restricted to the special distribution of planetesimals as mentioned above, while the collisional rate for an arbitrary planetesimal distribution can be deduced from our results.
8. Concluding remarks
Based on the efficient numerical procedures to find collision orbits developed in Sect. 2 to 4, we have evaluated numerically the collisional rate defined by Eq. (10). The results are summarized as follows: (i) the collisional rate <P(e,i)> is like that in the two-dimensional case for i≦0.1 (when e≦0.2) and i≦0.02/e (when e≧0.2), (ii) except for such two-dimensional region, <P(e,i)> is always enhanced by the solar gravity, (iii) <P(e,i)> reduces to <P(e,i)>_2B for (e^2+i^2)^(1/2)≧4, where <P(e,i)>_2B is the collisional rate in the two-body approximation, and (iv) there are two notable peaks in <P(e,i)>/<P(e,i)>_2B at e≒1 (i<1) and i≒3 (e<0.1); but the peak value is at most 4 to 5.
From the present numerical evaluation of <P(e,i)>, we have also found an approximate formula for <P(e,i)>, which can reproduce <P(e,i)> within a factor 5 but cannot express the peaks found at e≒1 (i<1) and i≒3 (e<0.1). These peaks are characteristic to the three-body problem. They are very important for the study of planetary growth, since they are closely related to the runaway growth of the protoplanet, as discussed by Wetherill and Cox (1985). This will be considered in the next paper (Ohtsuki and Ida, 1989), based on the results obtained in the present paper.
Acknowledgements. Numerical calculations were made by HITAC M-680 of the Computer Center of the University of Tokyo. This work was supported by the Grant-in-Aid for Scientific Research on Priority Area (Nos. 62611006 and 63611006) of the Ministry of Education, Science and Culture of Japan.
Fig. 18. Comparison of the enhancement factors with those of Wetherill and Cox (1985). The error bars in their results arise from a small number (10~35) of collision orbits which they found for each e. Our results are averaged by the distribution function which they used (see text).
Fig. 18.↓
http://www.fastpic.jp/images.php?file=0990654048.jpg
かなりの長文になりますが、どうかよろしくお願いします。
お礼
どうもありがとうございます。