合同式の証明をxに関する数学的帰納法で示す方法

このQ&Aのポイント
  • 5^2^x≡1{mod2^(x+2)},≡/[合同でない]1{mod2^(x+3)}であることをxに関する数学的帰納法で示します。
  • 数学的帰納法を用いて、合同式5^2^x≡1{mod2^(x+2)},≡/[合同でない]1{mod2^(x+3)}を証明します。
  • xを自然数とし、合同式5^2^x≡1{mod2^(x+2)},≡/[合同でない]1{mod2^(x+3)}をxに関する数学的帰納法で証明する方法をまとめました。
回答を見る
  • ベストアンサー

合同式の証明

5^2^x≡1{mod2^(x+2)},≡/[合同でない]1{mod2^(x+3)} であることをxに関する数学的帰納法で示しなさい。なおxは自然数とする。 m=1のとき 略 成り立つ m=kのとき与式が成り立つと仮定すると、 5^2^k≡1{mod 2^(k+2)},≡/[合同でない]1{mod2^(k+3)} これを等式で書くと最初の式から5^2^k=2^(k+2)・t+1 (tは整数) m=k+1のとき 5^2^(k+1)={2^(k+2)・t+1}^2=2^(k+3)・t{2^(k+1)・t+1}+1 と示してきたのですが、等式を5^2^k=2^(k+2)・t+1 (tは整数) として後の式を考えると、このtは何と言えるのでしょうか? これがわからなくて困っています。どなたかアドバイスください。 よろしくお願いします。

  • tbg
  • お礼率35% (64/178)

質問者が選んだベストアンサー

  • ベストアンサー
  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

>このtは何と言えるのでしょうか? きすう

tbg
質問者

補足

回答ありがとうございます。確かに奇数だと確認できたのですが、 tが奇数であることによって何がわかるのでしょうか?

その他の回答 (2)

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.3

>これだけで、5^2^k≡1{mod 2^(k+2)},≡/[合同でない]1{mod2^(k+3)} >を示せるのでしょうか? ホントに何を証明するか忘れてるとは思わなかったよ。。。

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.2

>tが奇数であることによって何がわかるのでしょうか? もう何を証明しようとしているのか忘れてしまったのですね。

tbg
質問者

補足

5^2^k=2^(k+2)・t+1 (tは奇数) これだけで、5^2^k≡1{mod 2^(k+2)},≡/[合同でない]1{mod2^(k+3)} を示せるのでしょうか? 確かに、奇数=偶数×奇数+1ですからtは奇数でなければなりません。 しかし、合同でない方の式へのつなげ方がわかりません。 もう一度何らかのアドバイスをいただけませんか?お願いします。

関連するQ&A

  • 合同式の証明

    5^2^x≡1{mod2^(x+2)},≡/[合同でない]1{mod2^(x+3)} であることをxに関する数学的帰納法で示しなさい。なおxは自然数とする。 x=1のとき 略 成り立つ x=kのとき与式が成り立つと仮定すると、 5^2^k≡1{mod 2^(k+2)},≡/[合同でない]1{mod2^(k+3)} これを等式で書くと最初の式から5^2^k=2^(k+2)・t+1 (tは奇数) tは奇数ということからこの後どのように証明していけばいいのでしょうか? 行き詰っています、どなたかアドバイスください。お願いします。

  • 帰納法

    以下の2問について行き詰っているので教えてください。 I  5^2^x≡1{mod2^(x+2)},≡/[合同でない]1{mod2^(x+3))} であることをxに関する数学的帰納法で示しなさい。 II  Iの結果を利用し、5^2^(y-2)≡1(mod2^y)(y≧2), 5^2^(y-3)≡/[合同でない]1(mod2^y)(y≧3)であることを示しなさい。 I (ⅰ)x=1のとき   5^2-1=24は2^3=8では割り切れるが、2^4=16では割り切れない。  よってx=1のとき成り立つ。 (ⅱ)x=kのとき与式が成り立つと仮定すると、  5^2^k≡1{mod2^(k+2)},≡/[合同でない]1{mod2^(k+3))}  これを等式で書くと最初の式から  5^2^k=2^(k+2)・t+1 (tは整数)    ・    ・ II  (ⅰ)x=y-2とおくと… Iを使うための条件は? (ⅱ)y=2のとき与式は成り立つ。 どなたかこの先どのように解法すればいいか教えてください。よろしくお願いします。

  • 合同式の証明

    (1)5^2^m≡1(mod 2^(m+2))が成り立ち, 5^2^m≡1(mod 2^(m+3))が成り立たない事を、mに関する数学的帰納法で示せ。(2) (1)の結果を利用して、5^2^(n-2))≡1(mod 2^n)(n≧2) が成り立ち, 5^2^(n-3)≡1(mod 2^n)(n≧3)が成り立たない事、(3) 5^2^(m-1)≡-1(mod 2)(m≧1)が成り立ち, 5^2^(m-1)≡-1(mod 2^n)(m≧1, n≧2)が成り立たない事を示せ。(1)~(3)の合同式を解きたいのですが解法がわかりません。教えてください。よろしくお願いします。

  • 大学数学で、合同方程式の問題なんですが、

    大学数学で、合同方程式の問題なんですが、 x^97≡22 mod 225 の解の求め方がわかりません。 どなたかおしえていただけないでしょうか それとx^t≡a mod n の解を求める際に gcd(a,m)=1 gcd(k、φ(m))=1を使うらしいのですが意味がわかりません。 このときのa,m,kは一般自然数です x^97は指数でxの97乗のことです よろしくお願いいたします。

  • 二次合同方程式の解法過程について

    Mr_Holland さんが以前回答された過程で、 「x≡±1 (mod 3)・・・・(1) ∴x=3n±1」・・・・・・(2) と 「±2n≡2 (mod 3)・・・・(3)  この合同式は ±n=1 のとき成立するので・・・(4)  ±n=3m+1 (m:整数)とおける。」・・・・・(5) の2つの展開が異なっているのが、よくわかりませんのでご教授願います。 【補足】 前者は展開が納得できるのですが、 後者は、 ±n=1(mod 3)から ⇔n=±1(mod 3)と同じだから、 ⇔n=3m±1と展開できるので、 (5)式±n=3m+1と異なります。 後者の妥当性が知りたいです。 以下、Mr_Holland さんからの 回答 2010-11-17 10:57:57 回答No.2 Mr_Holland  ANo.1は煩雑でした。  もう少しスマートに計算することができましたので、以下に示します。  x^2≡7 (mod 27) ⇒x^2≡7 (mod 9) ⇒x^2≡1 (mod 3) ⇔x≡±1 (mod 3) ∴x=3n±1 (n:整数)とおける。  以下、複号同順とします。  x^2=(3n±1)^2= 9n^2±6n+1 だから   x^2≡±6n+1≡7 (mod 9)  ∴±6n≡6 (mod 9)  ∴±2n≡2 (mod 3)  この合同式は ±n=1 のとき成立するので ±n=3m+1 (m:整数)とおける。  x^2=9(3m+1)^2+6(3m+1)+1 =81m^2+72m+16 だから   x^2≡18m+16≡7 (mod 27)  ∴18m+9≡0 (mod 27)  ∴2m+1≡0 (mod 3)  この合同式は m=1 のとき成立するので m=3k+1 (k:整数)とおける。   x=3n±1=±(±3n+1)=±{3(3m+1)+1}=±(9m+4)=±{9(3k+1)+4}=±(27k+13)  ∴x≡±13 (mod 27)  ∴x≡13,14 (mod 27)

  • 合同式

    以前も合同式について質問したのですが混乱してしまったのでまた教えてください すいません 2桁の自然数でその2乗した数の下2桁がもとの2桁の自然数に一致するものがある。 このような2桁の自然数を求める問題で 2桁の自然数10x+yとおくと 2乗すると (10x+y)^2=100(x^2)+10・2xy+y^2 となって y=1のとき(y^2)=1 y=5のとき(y^2)=25 Y=6のとき(y^2)=36 (i)y=1のとき なぜ2x≡x(mod10) x≡0(mod10) になるのでしょうか? (ii) y=5のとき なぜ 2xy+2=10x+2≡2(mod10)となるのですか? (iii) なぜ 2xy+2=12x+2≡2(mod10)と表されるのでしょうか? そして、 2x+3≡x(mod10) x+3≡(mod10) はどこから現れたのですか? そして、x=7ということはどこからでるのですか? 質問ばかりですいません 合同式は基礎しかわかりません 例えば5で割って割りきれる数を合同で表すと 0≡5≡10≡15≡(mod5) 私はこのぐらいしかわかりません お願いします

  • 数学的帰納法の不等式の問題です

    数学的帰納法の不等式の問題です。 nは自然数とする。不等式 2n が成り立つことを、数学的帰納法を用いて証明せよ n=1のときはわかるのですが、n=kのとき成り立つと仮定してn=k+1のときに成り立つことを証明する解き方がわかりません。 教えてください!

  • 数学的帰納法の証明問題

    代数学の問題で数学的帰納法を使った証明問題で躓いてしまいました。 問題の最初でわからないため、その後の問題も同じく解くことができません。 どなたかアドバイスをしていただけないでしょうか。 問1:自然数mに対して 5^2^m≡1 (mod 2^(m+2) ), /≡1 (mod 2^(m+3) )   (後者 /≡は「合同ではない」ってことです) であることをmに関する数学的帰納法で示せ。 問2:1の結果を利用して 5^2^(n-2) ≡ 1 (mod 2^n) (n≧2), 5^2^(n-3) /≡1 (mod 2^n) (n≧3) であることを示せ 問3 5^2^(m-1) ≡ -1(mod 2) (m≧1), 5^2^(m-1) /≡-1(mod 2^n) (m≧1,n≧2) を示せ。 現在問1の解き方として m=1で成り立つことを証明する。 m=r とし 5^2^r≡1 (mod 2^(r+2) ), /≡1 (mod 2^(r+3) ) が成立すると仮定し、 両辺にある数を加えたりかけたりして m=r+1 つまり 5^2^(r+1)≡1 (mod 2^(r+3) ), /≡1 (mod 2^(r+4) )になることを証明できれば すべての自然数mに対して成立することが証明できると思います。 ただ、m=rからどうやればm=r+1につなげられるかわかりません。 どなたかご指導のほどよろしくお願いします。

  • 連立1次合同式の解き方がよくわかりません。

    連立1次合同式の解き方がよくわかりません。 整数xの連立1次合同式を解きなさい。 5x ≡ 7 (mod11) 3x ≡ 5 (mod19) という問題です。 途中式と答えを教えてください。 よろしくお願いします。

  • 線形合同式と数列周期

    a,b,kを a≡1(mod4)、bと2との最大公約数が1、k>=2 を満たす自然数とすると、 線形合同式 x_(n+1)≡a*(x_n)+b mod 2^k ただし 0<= (x_n) <2^k で定義される0から(2^k)-1の間の整数による数列{x_n} は、任意の初期値x_0 に対して 周期が2^kであることを示せ。 わかりません。。よろしくお願いします!!