• 締切済み
  • すぐに回答を!

対称式

こんばんは。 よろしくお願いいたします。 x=2+√5,y=2+√3, z=-(√5+√3)/2のとき、次の式の値を求める問題で質問があります。 1/x^3+1/y^3+1/z^3-3/(xyz) 私は a=1/x, b=1/y c=1/zとおいて、 a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abcの法則を使って説いたのですが、解答は[0]らしいので最後に3abcをかけたらおかしいなと思いました。 どういった考えをすればよいでしょうか。 よろしくお願いいたします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数41
  • ありがとう数1

みんなの回答

  • 回答No.1
  • koko_u_
  • ベストアンサー率18% (459/2509)

>解答は[0]らしいので最後に3abcをかけたらおかしいなと思いました。 何のことかわかりません。「最後に 3abc をかける」とは?? sakuraocha さんの答えはどうなったの?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

koko_u_さん 申し訳ありません。 かけるではなく、たすでした。 ご指摘していただいたので自分の間違っているところがわかりました。 ありがとうございます。

質問者からの補足

3abcの場所を移動したほうがいいのではないかという自分の考えで勝手に移動してしまったのが間違えの原因でした。 再びお詫びと感謝を申し上げます。

関連するQ&A

  • 対称式の問題ですが・・・

    abc≠0  , a+b+c=0 , a^2+b^2+c^2=1 , bc+ca+ab=-1/2 とする。 このとき、 a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b) の値を求めよ。 という問題で、答えは【-3】となるらしいのですが、 求め方が全然分からないので詳しい求め方を教えてもらえないでしょうか? ちなみに、 1/b は、b分の1 という意味です。

  • 【対称式の問題】

    (1)a^2+b^2+c^2=1をみたす複素数a.b.c.に対して x=a+b+cとおく。 このとき、ab+bc+caのxの2次式で表せ。 (2)a^2+b^2+c^2=1,a^3+b^3+c^3=0,abc=3 をすべて満たす複素数a,b,cに対してx=a+b+cとおく。 このとき、x^3-3xの値は? 答えがないので困ってます(><) (1)は1/2(x^2-1)で正しいですか? (2)がいまいちわかりません 解ける方いらっしゃいましたら、 解説お願いします。

  • 対称式について

    数学の対象式について質問です。   a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc という対称式を、3文字の基本対象式である   a+b+c   ab+bc+ca   abc で示すとどのようになりますか? ちなみに、問題自体は「因数分解せよ。」というもので   (a+b)(b+c)(c+a) が答えでした。 気になって計算してみたのですが、どうしても示すことができなかったので質問しました。 よろしくお願いします。

  • にゃんこ先生の自作問題、4実数a,b,c,dとその基本対称式の符号の可能性

    にゃんこ先生といいます。 3実数a,b,cと、基本対称式a+b+c,ab+bc+ca,abcにおいて、その符号の可能性を下のように調べました。 a,b,cの符号が分かると、abcの符号は一通りに決まるので、それは省略します。 a>0,b>0,c>0ならばa+b+c>0,ab+bc+ca>0 a>0,b>0,c<0でa+b+c>0,ab+bc+ca>0の例:a=3,b=3,c=-1 a>0,b>0,c<0でa+b+c>0,ab+bc+ca<0の例:a=1,b=1,c=-1 a>0,b>0,c<0でa+b+c<0,ab+bc+ca<0の例:a=1,b=1,c=-3 a>0,b>0,c<0でa+b+c<0,ab+bc+ca>0はありえない。 a>0,b<0,c<0でa+b+c>0,ab+bc+ca>0はありえない。 a>0,b<0,c<0でa+b+c>0,ab+bc+ca<0の例:a=3,b=-1,c=-1 a>0,b<0,c<0でa+b+c<0,ab+bc+ca>0の例:a=1,b=-3,c=-3 a>0,b<0,c<0でa+b+c<0,ab+bc+ca<0の例:a=1,b=-1,c=-1 a<0,b<0,c<0ならばa+b+c<0,ab+bc+ca>0 では、4実数a,b,c,dと、基本対称式a+b+c+d,abc+abd+acd+bcd,ab+ac+ad+bc+bd+cd,abcd(これは省略する)において、その符号の可能性はどうなるのでしょうか?

  • 至急お願いします!!

    問題 a,b,cを実数とするとき、次の不等式を証明しなさい。また、等号が成り立つのはどんな時か。 (1)a*2+b*2+c*2≧ab+bc+ca これが、成り立つのはわかりました。 (2)a*4+b*4+c*4≧abc(a+b+c)の証明で、解答が (1)を利用して、   a*4+b*4+c*4≧a*2b*2+b*2c*2+c*2a*2=(ab)*2+(bc)*2+(ca)*2 ≧(ab)・(bc)+(bc)・(ca)+(ca)・(ab)=abc(a+b+c) となってるんですが・・・いまいち式の変形が理解できません。 特に、最後の一行への変形が・・・・・・ *2は、二乗。*4は、四乗の意味です。 教えてください・・・・・お願いします。

  • 数学

    a,b,cに関して、 a+b+c=a^2+b^2+c^2=a^3+b^3+c^2=nが成り立つとき、次の各問に答えよ。 (1)ab+bc+caをcの式で表せ。 (2)abcをnの式で表せ (3)a^4+b^4+c^4=nが成り立つとき、nの値を求めよ 教えてください お願いします

  • 文字式

    a,b,c,に関して a+b+c=(a^2)+(b^2)+(c^2)=(a^3)+(b^3)+(c^3)=n が成り立つとき、次の問いに答えるには ア。ab+bc+caをnの式で表す イ。abcをnの式で表す ウ。(a^4)+(b^4)+(c^4)=nが成り立つとき、nの値を求める。 でウがわかりません。 abc=n3/6-n2/2+n/3 ab+bc+ca=(1/2)n2-(1/2)n a+b+c=n ですが。 おしえてください。

  • 助けてください(泣)

    この前、問題を解いていて分からない問題があったので教えて下さい。 次の3問です。 手が出せない問題だったので、解き方を中心に知りたいです。 X+Y/3=Y+Z/4=Z+X/5(≠0)のときX^2+Y^2+Z^2/XY+YZ+ZXの値を求めよ。 a+1/b+c+2=b+1/c+a+2=c+1/a+b+2のとき、この式の値を求めよ。 a+b+c=6、ab+bc+ca=11、abc=6のとき、a/bc+b/ca+c/abの値を求めよ。 回答よろしくお願いします。

  • 対称式

    こんにちは。 よろしくお願いいたします」。 x+y+z=2√3,xy+yz+zx=-3 xyz=-6√3 を満たす実数x,y,zについて次の式の値を求めよ。 (1)x^2/yz+y^2/zx+z^2/xy (2)x^4+y^4+z^4 (1)はできたのですが、(2)がとき方すらわかりません。 答えは(1)-4,(2)162 です。 教えてください。 よろしくお願いいたします。

  • 高校数学 三次方程式

    a,b,cを定数とし、三次方程式x^3+ax^2+bx+c=0の三つの解をA、B、C(A<B<C)とする。A+B+C=4、A^2+B^2+C^2=14、A^3+B^3+C^3=34のとき、次の問いに答えよ。 (1)a,b,cをA,B,Cを用いて表せ。 (2)a,b,cの値を求めよ。 という問題です。 (1)はできました。a=-A-B-C,b=AB+BC+CA,c=-ABCですよね。 (2)もa=-4,b=1まではでました。(a=-(A+B+C)よりa=-4)(A^2+B^2+C^2=(A+B+C)^2-2(AB+BC+CA)より14=4^2&#65293;2bだからb=1) でもどうしてもcがでません(泣)。 ABCをどうにかして式の中に登場させればいいのでしょうが。。 どうかよろしくお願いいたします。